LEADER 01626nam 2200337 n 450 001 996392631703316 005 20221108101432.0 035 $a(CKB)1000000000673565 035 $a(EEBO)2240940455 035 $a(UnM)99872471 035 $a(EXLCZ)991000000000673565 100 $a19870723d1646 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 10$aSir Thomas Fairfax his summons sent into Oxford$b[electronic resource] $eand the governours answer, with the names of those Sir Thomas Glenham desires passes for to treat about what he shall send. Also Sir Thomas Fairfax his summons sent into Wallingford, Bostoll, and Rudcot. And the copie of the articles for the surrender of Dudley Castle to Sir William Brereton, with all ordnance, armes and ammunition, bag, and baggage. These being examined by the originall copies, are commanded to be printed, and are to be published according to order of Parliament 210 $aLondon: $cPrinted by Elizabeth Purslow$dMay 14. 1646 215 $a[2], 5, [1] p 300 $aReproduction of the original in the British Library. 330 $aeebo-0018 607 $aGreat Britain$xHistory$yCivil War, 1642-1649$xTreaties$vEarly works to 1800 607 $aOxford (England)$xHistory$ySiege, 1646$vEarly works to 1800 700 $aFairfax$b Thomas Fairfax$cBaron,$f1612-1671.$0804819 712 02$aEngland and Wales.$bParliament. 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996392631703316 996 $aSir Thomas Fairfax his summons sent into Oxford$92343719 997 $aUNISA LEADER 10981nam 22005293 450 001 996565867203316 005 20231203090315.0 010 $a3-031-47969-6 035 $a(MiAaPQ)EBC30980147 035 $a(Au-PeEL)EBL30980147 035 $a(EXLCZ)9929128106000041 100 $a20231203d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in Visual Computing $e18th International Symposium, ISVC 2023, Lake Tahoe, NV, USA, October 16-18, 2023, Proceedings, Part I 205 $a1st ed. 210 1$aCham :$cSpringer,$d2024. 210 4$d©2023. 215 $a1 online resource (630 pages) 225 1 $aLecture Notes in Computer Science Series ;$vv.14361 311 08$aPrint version: Bebis, George Advances in Visual Computing Cham : Springer,c2024 9783031479687 327 $aIntro -- Preface -- Organization -- Keynote Talks -- Machine Learning for Scientific Data Analysis and Visualization -- Estimating the Structure and Motion of Biomolecules at Atomic Resolutions -- Curriculum Learning and Active Learning, for Visual Object Recognition when Data is Scarce -- Have We Solved Image Correspondences? -- Visual Content Manipulation by Learning Generative Models -- Lights, Camera, Animation! Adaptive Simulation Methods for Training and Entertainment -- Beyond the Specs: A Computational and Human-Centered Approach to Wearability in AR/VR -- Contents - Part I -- Contents - Part II -- ST: Biomedical Image Analysis Techniques for Cancer Detection, Diagnosis and Management -- Hybrid Region and Pixel-Level Adaptive Loss for Mass Segmentation on Whole Mammography Images -- 1 Introduction -- 2 Related Work -- 2.1 Mass Segmentation on Whole Mammograms -- 2.2 Loss for Medical Image Segmentation -- 3 Methodology -- 3.1 Hybrid Pixel-Level Loss -- 3.2 Hybrid Region-Level Loss -- 3.3 Density-Adaptive Sample-Level Prioritizing Loss -- 4 Experimental Results -- 4.1 Datasets -- 4.2 Evaluation Metrics -- 4.3 Comparison with State-of-the-Art Methods -- 5 Conclusion -- References -- Deep Learning Based GABA Edited-MRS Signal Reconstruction -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 J-Difference Spectrum -- 2.3 Dual Branch Self-Attention Neural Network -- 2.4 Evaluation Metrics -- 3 Results and Discussion -- 4 Conclusion -- References -- Investigating the Impact of Attention on Mammogram Classification -- 1 Introduction -- 2 Data and Methods -- 2.1 Data Selection and Preprocessing -- 2.2 Selection of Models -- 2.3 Selection of Attention Methods -- 2.4 Training and Testing Process -- 3 Results and Discussion -- 3.1 Impact of Attention on CNN Performance -- 3.2 Impact of Model Architecture on Performance Differences. 327 $a3.3 Impact of Attention on Resolution -- 3.4 Impact of Attention on Abnormality Type -- 3.5 Relationship Between Model Activation and AU-ROC -- 4 Conclusions -- References -- ReFit: A Framework for Refinement of Weakly Supervised Semantic Segmentation Using Object Border Fitting for Medical Images -- 1 Introduction -- 2 Our ReFit Framework -- 2.1 Unsupervised Segment Detection -- 2.2 Class Activation Map - CAM -- 2.3 The BoundaryFit Module -- 3 Results and Discussion -- 3.1 Ablation Studies -- 4 Conclusion -- References -- A Data-Centric Approach for Pectoral Muscle Deep Learning Segmentation Enhancements in Mammography Images -- 1 Introduction -- 2 Related Work -- 3 Mammography Segmentation -- 3.1 Dataset -- 3.2 Model Training -- 3.3 Drawbacks -- 4 Data-Centric Model Optimization -- 4.1 Stage I: Annotation Correction -- 4.2 Stage II: Downsampling -- 5 Results -- 5.1 Evaluation Metrics -- 5.2 Evaluated Training Datasets -- 5.3 Intersection over Union Evaluation -- 5.4 Classification Metrics for Pectoral Muscle Detection in CC View -- 6 Conclusion -- References -- Visualization -- Visualizing Multimodal Time Series at Scale -- 1 Introduction -- 2 Related Work -- 3 Overview Scenario -- 4 Detail Methods and Implementation -- 4.1 Time Series Dataset -- 4.2 Exploiting Elasticsearch for Fast Search and Big Query -- 4.3 Visualizing Time Series -- 5 Exploring UMAFall Dataset with TimeXplore -- 6 Conclusions and Future Work -- References -- Hybrid Tree Visualizations for Analysis of Gerrymandering -- 1 Introduction -- 2 Related Work -- 3 Gerrymandering -- 4 Data Model in Gerrymandering -- 5 Visual Design -- 6 Analysis Examples -- 6.1 Evaluating the Efficiency Gap -- 6.2 Assessing Electoral Competition -- 7 Conclusion -- References -- ArcheryVis: A Tool for Analyzing and Visualizing Archery Performance Data -- 1 Introduction -- 2 Related Work. 327 $a2.1 Archery Performance Analysis -- 2.2 Archery Scoring Apps -- 3 Data Collection, Processing, and Analysis -- 3.1 Data Collection -- 3.2 Ring and Center Detection -- 3.3 Shot Detection and Calibration -- 3.4 Scoring and Statistical Measures -- 4 Visual Interface and Interaction -- 5 Results and Discussion -- 5.1 Brushing and Filtering -- 5.2 Trainee Comparison -- 5.3 Statistical Measure as Performance Indicator -- 5.4 Empirical Evaluation -- 5.5 Limitations -- 6 Conclusions and Future Work -- References -- Spiro: Order-Preserving Visualization in High Performance Computing Monitoring -- 1 Introduction -- 2 Related Work -- 2.1 Spiral Layout in Visualization -- 2.2 Monitoring with Spiral Layout -- 3 Monitoring Tasks -- 4 Spiro Design -- 4.1 Design Rationales -- 4.2 Visual Encoding -- 5 Case Studies -- 5.1 Clustering on Compute Servers -- 5.2 Exploring Usage Behavior -- 6 Conclusion and Future Work -- References -- From Faces to Volumes - Measuring Volumetric Asymmetry in 3D Facial Palsy Scans -- 1 Introduction -- 2 Related Work -- 3 Data Acquisition -- 4 Methods -- 4.1 3D Landmark Extraction for Facial Palsy Patients -- 4.2 Radial Curves -- 4.3 Lateral Face Mesh Generation -- 4.4 Volume Estimation for Lateral Face Sides -- 4.5 Volumetric Difference Visualization -- 5 Volume Analysis During Dynamic Movements -- 6 Conclusions and Future Work -- References -- Video Analysis and Event Recognition -- Comparison of Autoencoder Models for Unsupervised Representation Learning of Skeleton Sequences -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Proposed Methods -- 4 Experiments -- 4.1 Datasets -- 4.2 Results Analysis and Comparisons -- 5 Conclusion and Future Works -- References -- Local and Global Context Reasoning for Spatio-Temporal Action Localization -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Overall Pipeline. 327 $a3.2 Near-Actor Relation Network -- 4 Experiments on JHMDB21 -- 4.1 Implementation Details -- 4.2 Comparison on JHMDB21 -- 4.3 Ablation Study -- 4.4 Qualitative Results -- 5 Experiments on AVA -- 5.1 Implementation Details -- 5.2 Comparison on AVA -- 6 Conclusion -- References -- Zero-Shot Video Moment Retrieval Using BLIP-Based Models -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Computing Image and Text Embeddings -- 3.2 Sparse Frame-Sampling Strategies -- 3.3 Moment-Query Matching -- 4 Experiments -- 5 Results and Discussion -- 6 Conclusions and Future Work -- References -- Self-supervised Representation Learning for Fine Grained Human Hand Action Recognition in Industrial Assembly Lines -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Model Architecture -- 3.2 Masking Method -- 4 Experiments -- 4.1 Datasets -- 4.2 Model Training Environment -- 4.3 Self-supervised Pretraining and Downstream Task -- 5 Results and Analysis -- 5.1 Results Self-supervised Learning -- 5.2 Results Downstream Task -- 5.3 Analysis -- 6 Conclusion and Outlook -- References -- ST: Innovations in Computer Vision & -- Machine Learning for Critical & -- Civil Infrastructures -- Pretext Tasks in Bridge Defect Segmentation Within a ViT-Adapter Framework -- 1 Introduction -- 2 Methods -- 2.1 ViT-Adapter Model -- 2.2 Datasets -- 2.3 Supervised Learning (SL) Pre-training -- 2.4 Self- And Semi-Supervised Learning (SSL) Pre-training -- 2.5 Training Parameters -- 3 Results and Discussion -- 4 Conclusion -- References -- A Few-Shot Attention Recurrent Residual U-Net for Crack Segmentation -- 1 Introduction -- 1.1 Current Limitations and Our Contribution -- 2 Proposed Architecture -- 2.1 R2AU-Net Architecture for Road Crack Segmentation -- 2.2 Few-Shot Learning for Segmentation Refinement -- 3 Experimental Setup and Results -- 3.1 Dataset Description. 327 $a3.2 Comparative Algorithms and Training Configuration -- 3.3 Experiments and Comparisons -- 4 Conclusions -- References -- Efficient Resource Provisioning in Critical Infrastructures Based on Multi-Agent Rollout Enabled by Deep Q-Learning -- 1 Introduction -- 2 Related Work -- 3 Workload Management in Critical Infrastructures -- 3.1 Infrastructure Model -- 3.2 Problem Formulation -- 3.3 Deterministic Markov Decision Process Model -- 3.4 Multi-Agent Rollout Enabled by Deep Q-Learning -- 4 Simulation Experiments -- 4.1 Experimental Setup -- 4.2 Evaluation Results -- 5 Conclusions -- References -- Video-Based Recognition of Aquatic Invasive Species Larvae Using Attention-LSTM Transformer -- 1 Introduction -- 1.1 Attention-LSTM -- 2 Related Work -- 3 Proposed Method -- 3.1 Model Architecture -- 3.2 Attention-LSTM Layer -- 3.3 Model Variations -- 4 Invasive Species Dataset -- 5 Empirical Evaluation -- 6 Conclusion -- References -- ST: Generalization in Visual Machine Learning -- Latent Space Navigation for Face Privacy: A Case Study on the MNIST Dataset -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 4 Experimental Result -- 5 Future Work -- 6 Conclusion -- References -- Domain Generalization for Foreground Segmentation Using Federated Learning -- 1 Introduction -- 2 Related Work -- 3 Proposed Work -- 3.1 Model Architecture -- 3.2 Training Technique -- 4 Experiments -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Traditional Foreground Segmentation Experiment -- 4.4 Domain Generalization Experiment -- 4.5 Few-Shot Experiment -- 5 Conclusion and Future Work -- References -- Probabilistic Local Equivalence Certification for Robustness Evaluation -- 1 Introduction -- 2 Related Work -- 3 Probabilistic Local Equivalence Certification -- 3.1 Probabilistic Local Equivalence Certification -- 3.2 When Labels are Available. 327 $a3.3 The Case of Classification. 410 0$aLecture Notes in Computer Science Series 700 $aBebis$b George$0856301 701 $aGhiasi$b Golnaz$01448696 701 $aFang$b Yi$01448697 701 $aSharf$b Andrei$01448698 701 $aDong$b Yue$0638008 701 $aWeaver$b Chris$01236974 701 $aLeo$b Zhicheng$01448699 701 $aLaViola Jr$b Joseph J$0875705 701 $aKohli$b Luv$01448700 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996565867203316 996 $aAdvances in Visual Computing$93644373 997 $aUNISA