LEADER 01880nas 22005533 450 001 996548964503316 005 20240118213020.0 035 $a(DE-599)ZDB3026898-9 035 $a(OCoLC)1029058902 035 $a(CKB)4100000011300715 035 $a(CONSER)--2018200414 035 $a(EXLCZ)994100000011300715 100 $a20180320b20202021 --- a 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aACM/IMS transactions on data science 210 1$aNew York, NY :$cAssociation for Computing Machinery,$d[2020]- 215 $a1 online resource 311 $a2691-1922 517 1 $aTDS 517 1 $aTransactions on data science 517 1 $aACM transactions on data sciencec 531 0 $aACM/IMS trans. data sci. 606 $aData mining$xStatistical methods$vPeriodicals 606 $aBig data$xStatistical methods$vPeriodicals 606 $aQuantitative research$vPeriodicals 606 $aDonnées volumineuses$xMéthodes statistiques$vPériodiques 606 $aRecherche quantitative$vPériodiques 606 $aData mining$xStatistical methods$2fast$3(OCoLC)fst02007323 606 $aQuantitative research$2fast$3(OCoLC)fst01742283 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 615 0$aData mining$xStatistical methods 615 0$aBig data$xStatistical methods 615 0$aQuantitative research 615 6$aDonnées volumineuses$xMéthodes statistiques 615 6$aRecherche quantitative 615 7$aData mining$xStatistical methods. 615 7$aQuantitative research. 676 $a006 712 02$aAssociation for Computing Machinery, 712 02$aInstitute of Mathematical Statistics, 906 $aJOURNAL 912 $a996548964503316 996 $aACM$91888844 997 $aUNISA LEADER 04541nam 2200625Ia 450 001 9910483979803321 005 20200520144314.0 010 $a9781848821903 010 $a1848821905 024 7 $a10.1007/978-1-84882-190-3 035 $a(CKB)1000000000546259 035 $a(SSID)ssj0000317943 035 $a(PQKBManifestationID)11245545 035 $a(PQKBTitleCode)TC0000317943 035 $a(PQKBWorkID)10307696 035 $a(PQKB)11700493 035 $a(DE-He213)978-1-84882-190-3 035 $a(MiAaPQ)EBC3063832 035 $a(PPN)132867214 035 $a(EXLCZ)991000000000546259 100 $a20090209d2009 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aGeometric properties of Banach spaces and nonlinear iterations /$fCharles Chidume 205 $a1st ed. 2009. 210 $aBerlin $cSpringer$dc2009 215 $a1 online resource (XVII, 326 p.) 225 1 $aLecture notes in mathematics ;$v1965 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9781848821897 311 08$a1848821891 320 $aIncludes bibliographical references (p. 301-324) and index. 327 $aSome Geometric Properties of Banach Spaces -- Smooth Spaces -- Duality Maps in Banach Spaces -- Inequalities in Uniformly Convex Spaces -- Inequalities in Uniformly Smooth Spaces -- Iterative Method for Fixed Points of Nonexpansive Mappings -- Hybrid Steepest Descent Method for Variational Inequalities -- Iterative Methods for Zeros of ? ? Accretive-Type Operators -- Iteration Processes for Zeros of Generalized ? ?Accretive Mappings -- An Example; Mann Iteration for Strictly Pseudo-contractive Mappings -- Approximation of Fixed Points of Lipschitz Pseudo-contractive Mappings -- Generalized Lipschitz Accretive and Pseudo-contractive Mappings -- Applications to Hammerstein Integral Equations -- Iterative Methods for Some Generalizations of Nonexpansive Maps -- Common Fixed Points for Finite Families of Nonexpansive Mappings -- Common Fixed Points for Countable Families of Nonexpansive Mappings -- Common Fixed Points for Families of Commuting Nonexpansive Mappings -- Finite Families of Lipschitz Pseudo-contractive and Accretive Mappings -- Generalized Lipschitz Pseudo-contractive and Accretive Mappings -- Finite Families of Non-self Asymptotically Nonexpansive Mappings -- Families of Total Asymptotically Nonexpansive Maps -- Common Fixed Points for One-parameter Nonexpansive Semigroup -- Single-valued Accretive Operators; Applications; Some Open Questions. 330 $aNonlinear functional analysis and applications is an area of study that has provided fascination for many mathematicians across the world. This monograph delves specifically into the topic of the geometric properties of Banach spaces and nonlinear iterations, a subject of extensive research over the past thirty years. Chapters 1 to 5 develop materials on convexity and smoothness of Banach spaces, associated moduli and connections with duality maps. Key results obtained are summarized at the end of each chapter for easy reference. Chapters 6 to 23 deal with an in-depth, comprehensive and up-to-date coverage of the main ideas, concepts and results on iterative algorithms for the approximation of fixed points of nonlinear nonexpansive and pseudo-contractive-type mappings. This includes detailed workings on solutions of variational inequality problems, solutions of Hammerstein integral equations, and common fixed points (and common zeros) of families of nonlinear mappings. Carefully referenced and full of recent, incisive findings and interesting open-questions, this volume will prove useful for graduate students of mathematical analysis and will be a key-read for mathematicians with an interest in applications of geometric properties of Banach spaces, as well as specialists in nonlinear operator theory. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1965. 606 $aBanach spaces 606 $aProbabilities 615 0$aBanach spaces. 615 0$aProbabilities. 676 $a515.732 686 $aMAT 462f$2stub 686 $aMAT 476f$2stub 686 $aMAT 652f$2stub 686 $aSI 850$2rvk 700 $aChidume$b Charles$0606379 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483979803321 996 $aGeometric properties of banach spaces and nonlinear iterations$91120451 997 $aUNINA