LEADER 06986nam 2200553 450 001 996503551903316 005 20231110233651.0 010 $a981-19-6116-6 035 $a(MiAaPQ)EBC7153313 035 $a(Au-PeEL)EBL7153313 035 $a(CKB)25610237700041 035 $a(OCoLC)1354207753 035 $a(EXLCZ)9925610237700041 100 $a20230415d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApproximation theory, sequence spaces and applications /$fS. A. Mohiuddine, Bipan Hazarika, and Hemant Kumar Nashine 210 1$aSingapore :$cSpringer,$d[2022] 210 4$dŠ2022 215 $a1 online resource (277 pages) 225 1 $aIndustrial and Applied Mathematics 311 08$aPrint version: Mohiuddine, S. A. Approximation Theory, Sequence Spaces and Applications Singapore : Springer,c2023 9789811961151 327 $aIntro -- Preface -- Contents -- About the Editors -- 1 Topology on Geometric Sequence Spaces -- 1.1 Introduction -- 1.1.1 ?-Generator and Geometric Complex Field -- 1.1.2 Some Useful Relations Between Geometric Operations and Ordinary Arithmetic Operations -- 1.1.3 G-Limit -- 1.1.4 G-Continuity -- 1.2 Geometric Vector Spaces -- 1.2.1 Geometric Vector Space -- 1.2.2 Dual System -- 1.3 Topology on Geometric Sequence Spaces -- 1.3.1 Normal Topology -- 1.3.2 Perfect Sequence Space -- 1.3.3 Simple Space -- 1.3.4 Symmetric Sequence Spaces -- References -- 2 Composition Operators on Second-Order Cesŕro Function Spaces -- 2.1 Introduction -- 2.2 Examining the Boundedness -- 2.3 Compactness and Essential Norm of Composition Operators -- 2.4 Fredholm Composition Operators -- 2.5 Conclusion -- References -- 3 Generalized Deferred Statistical Convergence -- 3.1 Definitions and Preliminaries -- 3.2 Deferred Statistical Convergence of Order ?? -- 3.3 Strong s-Deferred Cesŕro Summability of Order ?? -- 3.4 Inclusion Theorems -- 3.5 Special Cases -- References -- 4 Approximation by Generalized Lupa?-P?lt?nea Operators -- 4.1 Introduction -- 4.2 Basic Results -- 4.3 Main Results -- 4.3.1 Weighted Approximation -- 4.3.2 Quantitative Voronoskaja-Type Approximation Theorem -- 4.3.3 Grüss Voronovskaya-Type Theorem -- 4.3.4 Approximation Properties of DBV[0,infty) -- References -- 5 Zachary Spaces mathcalZp[mathbbRinfty] and Separable Banach Spaces -- 5.1 Introduction -- 5.1.1 Preliminaries -- 5.1.2 Basis for a Banach Spaces -- 5.2 Space of Functions of Bounded Mean Oscillation (BMO[mathbbRIinfty]) -- 5.3 Zachary Space mathcalZp[mathbbRIinfty] -- 5.4 Zachary Space mathcalZp[mathfrakB], Where mathfrakB is Separable Banach Space -- References -- 6 New Generalization of the Power Summability Methods for Dunkl Generalization of Szász Operators via q-Calculus. 327 $a6.1 Introduction -- 6.2 Dunkl Generalization of the Szász Operators Obtained by q-Calculus -- 6.3 Preliminary Results -- 6.4 Direct Estimates -- 6.5 Weighted Approximation -- 6.6 Statistical Approximation Properties for Dunkl Generalization of Szász Operators via q-Calculus -- 6.7 Rate of Convergence of the Dunkl Generalization of Szász Operators via q-Calculus -- 6.8 Conclusion -- References -- 7 Approximation by Generalized Szász-Jakimovski-Leviatan Type Operators -- 7.1 Introduction -- 7.2 Construction of Operators and Estimation of Moments -- 7.3 Approximation in Weighted Spaces -- 7.4 Some Direct Approximation Theorems -- 7.5 A-Statistical Convergence -- 7.6 Conclusion -- References -- 8 On Approximation of Signals -- 8.1 Introduction -- 8.2 Known Results -- 8.3 Main Theorems -- 8.4 Lemmas -- 8.5 Proof of the Lemmas -- 8.6 Proof of Main Theorems -- 8.7 Conclusion -- References -- 9 Numerical Solution for Nonlinear Problems -- 9.1 Introduction -- 9.2 Introducing Some Nonlinear Functional and Fractional Equations -- 9.3 A Coupled Semi-analytic Method to Find the Solution of Equation (9.1) -- 9.3.1 Constructing Some Iterative Algorithms to Approximate the Solution of Equations (9.2)-(9.5) -- 9.4 Convergence of the Algorithms -- 9.5 Constructing an Iterative Algorithm by Sinc Function -- 9.5.1 One-Dimensional Functional Integral Equation -- 9.5.2 Convergence of Algorithm (9.62) -- 9.5.3 Two-Dimensional Functional Integral Equation -- References -- 10 Szász-Type Operators Involving q-Appell Polynomials -- 10.1 Introduction -- 10.2 Construction of the Operators and Basic Estimates -- 10.3 Some Basic Results -- 10.4 Pointwise Approximation Results -- 10.5 Weighted Approximation -- 10.6 A-Statistical Approximation -- References -- 11 Commutants of the Infinite Hilbert Operators -- 11.1 Introduction -- 11.2 Main Results. 327 $a11.3 Norm of Operators on Sequence Spaces ?n(p) and ?n(p) -- References -- 12 On Complex Uncertain Sequences Defined by Orlicz Function -- 12.1 Introduction -- 12.2 Preliminaries -- 12.3 Complex Uncertain Sequence Spaces -- 12.4 Statistical Convergence of Complex Uncertain Sequences -- 12.5 Complex Uncertain Sequence Spaces Defined by Orlicz Function -- 12.6 Statistical Convergence of Complex Uncertain Sequences Defined by Orlicz Function -- 12.7 On Paranormed Type p-Absolutely Summable Uncertain Sequence Spaces Defined by Orlicz Functions -- 12.8 Lacunary Convergence Concepts of Complex Uncertain Sequences with Respect to Orlicz Function -- 12.9 Conclusion -- References -- 13 Ulam-Hyers Stability of Mixed Type Functional Equation Deriving From Additive and Quadratic Mappings in Intuitionistic Random Normed Spaces -- 13.1 Introduction -- 13.2 Preliminaries -- 13.3 Ulam-Hyers Stability for Odd Case -- 13.4 Ulam-Hyers Stability for Even Case -- 13.5 Ulam-Hyers Stability for Mixed Case -- 13.6 Conclusion -- References -- 14 A Study on q-Euler Difference Sequence Spaces -- 14.1 Introduction, Preliminaries, and Notations -- 14.1.1 Euler Matrix of Order 1 and Sequence Spaces -- 14.1.2 q-Calculus -- 14.2 q-Euler Difference Sequence Spaces -- 14.3 Alpha-, Beta-, and Gamma-Duals of q-Euler Difference Sequence Spaces -- 14.4 Matrix Transformations -- 14.5 Compact Operators and Hausdorff Measure of Non-compactness (Hmnc) -- References. 410 0$aIndustrial and Applied Mathematics 606 $aApproximation theory 606 $aApproximation theory$xData processing 606 $aTeoria de l'aproximació$2thub 606 $aProcessament de dades$2thub 608 $aLlibres electrňnics$2thub 615 0$aApproximation theory. 615 0$aApproximation theory$xData processing. 615 7$aTeoria de l'aproximació 615 7$aProcessament de dades 676 $a511.4 700 $aMohiuddine$b S. A.$01272044 702 $aHazarika$b Bipan 702 $aNashine$b Hemant Kumar 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996503551903316 996 $aApproximation theory, sequence spaces and applications$93089026 997 $aUNISA LEADER 02354nam2 2200445 i 450 001 VAN0114882 005 20220308113807.132 017 70$2N$a978-3-319-33301-4 100 $a20180214d2016 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aˆ1.: ‰Linear inequalities$fYuming Qin 210 $aCham$cSpringer$d2016 215 $aXVI, 989 p.$cill.$d24 cm 461 1$1001VAN0114881$12001 $aIntegral and discrete inequalities and their applications$fYuming Qin$1210 $aCham$cSpringer$d2016$1215 $avolumi$cill.$d24 cm$v1 500 1$3VAN0242481$aIntegral and discrete inequalities and their applications. Vol. I, Linear inequalities$92785101 606 $a34A40$xTheoretical approximation of solutions to ordinary differential equations [MSC 2020]$3VANC023142$2MF 606 $a35A23$xInequalities applied to PDEs involving derivatives, differential and integral operators, or integrals [MSC 2020]$3VANC031168$2MF 606 $a26D20$xOther analytical inequalities [MSC 2020]$3VANC033965$2MF 610 $aGronwall-Bellman inequality$9KW:K 610 $aLinear multi-dimensional continuous integral inequalities$9KW:K 610 $aLinear multi-dimensional discontinuous integral inequalities$9KW:K 610 $aLinear multi-dimensional discrete inequalities$9KW:K 610 $aLinear one-dimensional continuous integral inequalities$9KW:K 610 $aLinear one-dimensional discontinuous integral inequalities$9KW:K 610 $aLinear one-dimensional discrete inequalities$9KW:K 610 $aOrdinary differential equations$9KW:K 610 $aPartial differential equations$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aQin$bYuming$3VANV087328$0314000 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-33301-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN0114882 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 2308 $e15EB 2308 20180214 996 $aIntegral and discrete inequalities and their applications. Vol. I, Linear inequalities$92785101 997 $aUNICAMPANIA