LEADER 02583nam 22005775 450 001 996509959903316 005 20230127011820.0 010 $a3-8394-6540-0 024 7 $a10.1515/9783839465400 035 $a(CKB)5690000000114457 035 $a(DE-B1597)642385 035 $a(DE-B1597)9783839465400 035 $a(EXLCZ)995690000000114457 100 $a20230127h20232023 fg 101 0 $ager 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPopulismus und Kino $ePolitische Repräsentation im Hollywood der 1930er Jahre /$fJohannes Pause 210 1$aBielefeld : $ctranscript Verlag, $d[2023] 210 4$d©2023 215 $a1 online resource (198 p.) 225 0 $aFilm 327 $tFrontmatter -- $tInhalt -- $t1. Das Theater des Populismus -- $t2. Die Urszene populistischer Repräsentation -- $t3. Die populistische Intervention -- $t4. Die Säkularisierung der populistischen Theologie -- $tFilmverzeichnis -- $tLiteraturverzeichnis -- $tDanksagung 330 $aDie 1930er-Jahre gelten als das populistische Jahrzehnt Hollywoods. Regisseure wie Frank Capra, Leo McCarey und John Ford entwerfen in ihren Werken Szenarien geglückter oder gescheiterter politischer Repräsentation, in denen sich demokratische Ideale mit politischer Theologie und amerikanischem Exzeptionalismus verbinden. Die Szenographie dieser Filme hat sich tief in das kulturelle Gedächtnis der USA eingeschrieben und prägt die politische Inszenierung von Repräsentation bis heute. Johannes Pause liest die damals entstandene Bildsprache als eine Typologie populistischer Repräsentation neu und nutzt sie als Folie, um aktuelle politische Tendenzen zu analysieren. 606 $aSOCIAL SCIENCE / Media Studies$2bisacsh 610 $aAmerica. 610 $aConservatism. 610 $aCultural History. 610 $aDemocracy. 610 $aExzeceptionalism. 610 $aHollywood. 610 $aMedia Studies. 610 $aPolitical Ideologies. 610 $aPolitical Representation. 610 $aPolitics. 610 $aPopulism. 610 $aPostfactual Populism. 610 $aScenography. 610 $aUSA. 610 $aVisual Language. 615 7$aSOCIAL SCIENCE / Media Studies. 676 $a300 700 $aPause$b Johannes, $4aut$4http://id.loc.gov/vocabulary/relators/aut$01277421 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a996509959903316 996 $aPopulismus und Kino$93010990 997 $aUNISA LEADER 06986nam 2200553 450 001 996503551903316 005 20231110233651.0 010 $a981-19-6116-6 035 $a(MiAaPQ)EBC7153313 035 $a(Au-PeEL)EBL7153313 035 $a(CKB)25610237700041 035 $a(OCoLC)1354207753 035 $a(EXLCZ)9925610237700041 100 $a20230415d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApproximation theory, sequence spaces and applications /$fS. A. Mohiuddine, Bipan Hazarika, and Hemant Kumar Nashine 210 1$aSingapore :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (277 pages) 225 1 $aIndustrial and Applied Mathematics 311 08$aPrint version: Mohiuddine, S. A. Approximation Theory, Sequence Spaces and Applications Singapore : Springer,c2023 9789811961151 327 $aIntro -- Preface -- Contents -- About the Editors -- 1 Topology on Geometric Sequence Spaces -- 1.1 Introduction -- 1.1.1 ?-Generator and Geometric Complex Field -- 1.1.2 Some Useful Relations Between Geometric Operations and Ordinary Arithmetic Operations -- 1.1.3 G-Limit -- 1.1.4 G-Continuity -- 1.2 Geometric Vector Spaces -- 1.2.1 Geometric Vector Space -- 1.2.2 Dual System -- 1.3 Topology on Geometric Sequence Spaces -- 1.3.1 Normal Topology -- 1.3.2 Perfect Sequence Space -- 1.3.3 Simple Space -- 1.3.4 Symmetric Sequence Spaces -- References -- 2 Composition Operators on Second-Order Cesàro Function Spaces -- 2.1 Introduction -- 2.2 Examining the Boundedness -- 2.3 Compactness and Essential Norm of Composition Operators -- 2.4 Fredholm Composition Operators -- 2.5 Conclusion -- References -- 3 Generalized Deferred Statistical Convergence -- 3.1 Definitions and Preliminaries -- 3.2 Deferred Statistical Convergence of Order ?? -- 3.3 Strong s-Deferred Cesàro Summability of Order ?? -- 3.4 Inclusion Theorems -- 3.5 Special Cases -- References -- 4 Approximation by Generalized Lupa?-P?lt?nea Operators -- 4.1 Introduction -- 4.2 Basic Results -- 4.3 Main Results -- 4.3.1 Weighted Approximation -- 4.3.2 Quantitative Voronoskaja-Type Approximation Theorem -- 4.3.3 Grüss Voronovskaya-Type Theorem -- 4.3.4 Approximation Properties of DBV[0,infty) -- References -- 5 Zachary Spaces mathcalZp[mathbbRinfty] and Separable Banach Spaces -- 5.1 Introduction -- 5.1.1 Preliminaries -- 5.1.2 Basis for a Banach Spaces -- 5.2 Space of Functions of Bounded Mean Oscillation (BMO[mathbbRIinfty]) -- 5.3 Zachary Space mathcalZp[mathbbRIinfty] -- 5.4 Zachary Space mathcalZp[mathfrakB], Where mathfrakB is Separable Banach Space -- References -- 6 New Generalization of the Power Summability Methods for Dunkl Generalization of Szász Operators via q-Calculus. 327 $a6.1 Introduction -- 6.2 Dunkl Generalization of the Szász Operators Obtained by q-Calculus -- 6.3 Preliminary Results -- 6.4 Direct Estimates -- 6.5 Weighted Approximation -- 6.6 Statistical Approximation Properties for Dunkl Generalization of Szász Operators via q-Calculus -- 6.7 Rate of Convergence of the Dunkl Generalization of Szász Operators via q-Calculus -- 6.8 Conclusion -- References -- 7 Approximation by Generalized Szász-Jakimovski-Leviatan Type Operators -- 7.1 Introduction -- 7.2 Construction of Operators and Estimation of Moments -- 7.3 Approximation in Weighted Spaces -- 7.4 Some Direct Approximation Theorems -- 7.5 A-Statistical Convergence -- 7.6 Conclusion -- References -- 8 On Approximation of Signals -- 8.1 Introduction -- 8.2 Known Results -- 8.3 Main Theorems -- 8.4 Lemmas -- 8.5 Proof of the Lemmas -- 8.6 Proof of Main Theorems -- 8.7 Conclusion -- References -- 9 Numerical Solution for Nonlinear Problems -- 9.1 Introduction -- 9.2 Introducing Some Nonlinear Functional and Fractional Equations -- 9.3 A Coupled Semi-analytic Method to Find the Solution of Equation (9.1) -- 9.3.1 Constructing Some Iterative Algorithms to Approximate the Solution of Equations (9.2)-(9.5) -- 9.4 Convergence of the Algorithms -- 9.5 Constructing an Iterative Algorithm by Sinc Function -- 9.5.1 One-Dimensional Functional Integral Equation -- 9.5.2 Convergence of Algorithm (9.62) -- 9.5.3 Two-Dimensional Functional Integral Equation -- References -- 10 Szász-Type Operators Involving q-Appell Polynomials -- 10.1 Introduction -- 10.2 Construction of the Operators and Basic Estimates -- 10.3 Some Basic Results -- 10.4 Pointwise Approximation Results -- 10.5 Weighted Approximation -- 10.6 A-Statistical Approximation -- References -- 11 Commutants of the Infinite Hilbert Operators -- 11.1 Introduction -- 11.2 Main Results. 327 $a11.3 Norm of Operators on Sequence Spaces ?n(p) and ?n(p) -- References -- 12 On Complex Uncertain Sequences Defined by Orlicz Function -- 12.1 Introduction -- 12.2 Preliminaries -- 12.3 Complex Uncertain Sequence Spaces -- 12.4 Statistical Convergence of Complex Uncertain Sequences -- 12.5 Complex Uncertain Sequence Spaces Defined by Orlicz Function -- 12.6 Statistical Convergence of Complex Uncertain Sequences Defined by Orlicz Function -- 12.7 On Paranormed Type p-Absolutely Summable Uncertain Sequence Spaces Defined by Orlicz Functions -- 12.8 Lacunary Convergence Concepts of Complex Uncertain Sequences with Respect to Orlicz Function -- 12.9 Conclusion -- References -- 13 Ulam-Hyers Stability of Mixed Type Functional Equation Deriving From Additive and Quadratic Mappings in Intuitionistic Random Normed Spaces -- 13.1 Introduction -- 13.2 Preliminaries -- 13.3 Ulam-Hyers Stability for Odd Case -- 13.4 Ulam-Hyers Stability for Even Case -- 13.5 Ulam-Hyers Stability for Mixed Case -- 13.6 Conclusion -- References -- 14 A Study on q-Euler Difference Sequence Spaces -- 14.1 Introduction, Preliminaries, and Notations -- 14.1.1 Euler Matrix of Order 1 and Sequence Spaces -- 14.1.2 q-Calculus -- 14.2 q-Euler Difference Sequence Spaces -- 14.3 Alpha-, Beta-, and Gamma-Duals of q-Euler Difference Sequence Spaces -- 14.4 Matrix Transformations -- 14.5 Compact Operators and Hausdorff Measure of Non-compactness (Hmnc) -- References. 410 0$aIndustrial and Applied Mathematics 606 $aApproximation theory 606 $aApproximation theory$xData processing 606 $aTeoria de l'aproximació$2thub 606 $aProcessament de dades$2thub 608 $aLlibres electrònics$2thub 615 0$aApproximation theory. 615 0$aApproximation theory$xData processing. 615 7$aTeoria de l'aproximació 615 7$aProcessament de dades 676 $a511.4 700 $aMohiuddine$b S. A.$01272044 702 $aHazarika$b Bipan 702 $aNashine$b Hemant Kumar 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996503551903316 996 $aApproximation theory, sequence spaces and applications$93089026 997 $aUNISA