LEADER 04713nam 2200457 450 001 996499862003316 005 20231110224444.0 010 $a9783031165184$b(electronic bk.) 010 $z9783031165177 035 $a(MiAaPQ)EBC7145513 035 $a(Au-PeEL)EBL7145513 035 $a(CKB)25456503100041 035 $a(OCoLC)1351750658 035 $a(PPN)266348882 035 $a(EXLCZ)9925456503100041 100 $a20230408d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aProgress in nanophotonics 7 /$fedited by Takashi Yatsui 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$dİ2022 215 $a1 online resource (187 pages) 225 1 $aTopics in Applied Physics ;$vv.147 311 08$aPrint version: Yatsui, Takashi Progress in Nanophotonics 7 Cham : Springer International Publishing AG,c2023 9783031165177 320 $aIncludes bibliographical references and index. 327 $aIntro -- Foreword -- Preface to Volume VII -- Contents -- Contributors -- 1 First-Principles Calculation of Photoexcited Electron Dynamics of Nanostructures -- 1.1 Introduction -- 1.2 Theory About Photoexcitation of Nanoparticle -- 1.3 Simulation of Photoexcited Electron Dynamics -- 1.4 Gold Nanocluster -- 1.5 Gold-Thiolate Nanocluster -- 1.6 Near-Field Excitation of Silicon -- 1.7 Silver Nanocluster/Titania Heterostructure -- 1.8 Summary -- 1.9 Appendix -- References -- 2 Nanomaterials for Localized Surface Plasmon Resonance-Related Optical Functionalities -- 2.1 Localized Surface Plasmon Resonance -- 2.1.1 Shape-Controlled Plasmonic Nanomaterials -- 2.1.2 Assembly-Controlled Plasmonic Nanomaterials -- 2.2 Various Optical Functionalities Related to Localized Surface Plasmon Resonance -- 2.2.1 Surface Enhanced Raman Scattering Substrates -- 2.2.2 Polarizers -- 2.2.3 Hologram Memory Media -- 2.2.4 Solar Cells -- 2.2.5 Photocatalysts -- 2.3 Summary and Outlook -- References -- 3 Nanochemistry by Thermoplasmonic Effects -- 3.1 Introduction -- 3.2 Thermoplasmonics and Temperature -- 3.2.1 Heat Power Generated in NPs -- 3.2.2 Temperature Generation in NPs -- 3.2.3 Collective Effects -- 3.2.4 Pulsed Illumination -- 3.3 Thermoplasmonics and Chemistry -- 3.3.1 Driven Chemical Reaction and Catalysis -- 3.3.2 Polymer Chemistry -- 3.3.3 Curing Inorganic Materials Prepared via Sol-Gel Chemistry -- 3.4 Conclusion -- References -- 4 Hybrid Integration of Quantum-Dot Non-classical Light Sources on Si -- 4.1 Introduction -- 4.2 Device Design for Near-Unity Coupling of QD Emission into Si Photonic Waveguide -- 4.3 Hybrid Integration of QD SPSs on Si -- 4.3.1 Transfer Printing -- 4.3.2 Procedure of Integrating QD SPS on Si CMOS Chip Based on TP -- 4.3.3 Evaluation of Integrated QD SPS on CMOS Si Waveguide. 327 $a4.4 In-Situ Wavelength Control of QD Single-Photon Source on Si CMOS Chip -- 4.4.1 Device Structure for On-Chip Spectral Tuning of QD SPS -- 4.4.2 Fabrication of Investigated Device Structure -- 4.4.3 Optical Characterization of the Fabricated Device -- 4.4.4 Spectral Matching Between Two Dissimilar Integrated QD Sources -- 4.5 Summary -- References -- 5 Hybrid Quantum Nanophotonics-Interfacing Color Center in Nanodiamonds with Si3N4-Photonics -- 5.1 Introduction -- 5.2 Potential Pathways Towards Hybrid Quantum Photonics -- 5.2.1 ``Structure to Emitter'' Approach -- 5.2.2 ``Emitter to Structure'' Approach -- 5.3 Nanophotonic Device Design of Si3N4-Photonics Towards Optimal Hybrid Integration -- 5.3.1 Single-Mode Planar Optical Waveguide -- 5.3.2 Apodized Grating Coupler -- 5.3.3 Mach-Zehnder Interferometer -- 5.3.4 Mach-Zehnder Interferometer Thermo-Optical Tunable Filter -- 5.3.5 Cascaded Mach-Zehnder Interferometer as Tunable Filter on Chip -- 5.3.6 Photonic Crystal Cavity -- 5.3.7 Freestanding, Cross-Bar Photonic Crystal Cavities -- 5.4 Color Center in Nanodiamonds -- 5.5 Quantum-Postprocessing -- 5.6 Hybrid Quantum Devices Based on Si3N4-Photonics Post-processed with Color Center in Nanodiamonds -- 5.6.1 Full Characterization of a Cross-Bar PhC Cavity for an Evanescently Coupled Emitter -- 5.6.2 Hybrid Quantum Nanophotonics Established by Evanescent Optical Coupling -- 5.6.3 Hybrid Quantum Nanophotonics Established by Embedded Optical Coupling -- 5.7 Summary -- References -- Index. 410 0$aTopics in Applied Physics 606 $aNanophotonics 615 0$aNanophotonics. 676 $a730 702 $aYatsui$b Takashi 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a996499862003316 996 $aProgress in nanophotonics 7$93084254 997 $aUNISA