LEADER 08150nam 2200481 450 001 996499860603316 005 20231110234414.0 010 $a981-19-5821-1 035 $a(MiAaPQ)EBC7150299 035 $a(Au-PeEL)EBL7150299 035 $a(CKB)25504475300041 035 $a(PPN)266350437 035 $a(EXLCZ)9925504475300041 100 $a20230413d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aGlasses and glass-ceramics $eadvanced processing and applications /$fedited K. Annapurna and Atiar Rahaman Molla 210 1$aSingapore :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (318 pages) 225 1 $aAdvanced Structured Materials ;$vv.178 311 08$aPrint version: Annapurna, K. Glasses and Glass-Ceramics Singapore : Springer,c2023 9789811958205 320 $aIncludes bibliographical references. 327 $aIntro -- Foreword -- Preface -- Contents -- About the Editors -- 1 Thermodynamics of Glasses -- 1.1 Introduction -- 1.2 The Language of Phenomenological Thermodynamics -- 1.3 The Glassy State -- 1.4 Multicomponent Glasses -- 1.5 Summary and Outlook -- Appendix 1 -- Appendix 2 -- Appendix 3 -- References -- 2 Chemical Durability of Glasses -- 2.1 Introduction -- 2.2 Design and Evaluation of Corrosion Tests -- 2.2.1 Design of Corrosion Tests -- 2.2.2 Evaluation of Corrosion Tests -- 2.3 Sub-surface Layers -- 2.4 Thermodynamic Approach to the Hydrolytic Stability -- 2.5 Rate Equation -- 2.6 Reaction Path Calculation, Corrosion Layers, Long-Term Behavior -- 2.7 Summary and Outlook -- References -- 3 Radiation Heat Transfer in Glass Melts: Key Concepts and Phenomena -- 3.1 Introduction -- 3.2 Review of Some Basic Concepts of Thermal Radiation -- 3.2.1 Planck's Law (Spectral/Monochromatic Blackbody Emissive Power) -- 3.2.2 Stefan-Boltzmann Law (Total Blackbody Emissive Power) -- 3.2.3 Intensity of Radiation -- 3.2.4 Radiation Properties of Surfaces -- 3.3 Radiation in Absorbing, Emitting, and Scattering Media -- 3.3.1 Attenuation of Radiative Intensity by Absorption and Scattering -- 3.3.2 Augmentation of Radiative Intensity by Emission and Scattering -- 3.3.3 The Radiative Transfer Equation -- 3.4 Radiative Heat Flux and Its Divergence -- 3.5 Approximate and Limiting Cases of RTE -- 3.5.1 One-Dimensional RTE in a Non-scattering Medium -- 3.5.2 Optically Thin Limit (?L? ? 1) -- 3.5.3 Optically Thick Limit (?L????1) -- 3.5.4 An Approximate Solution for One-Dimensional Gray Medium -- 3.6 Absorption Spectra of Glass Melts -- 3.7 Modeling of Thermal Radiation in Glass Melts -- 3.7.1 Discrete Ordinates Method (DOM) -- 3.7.2 Diffusion Approximation: Radiative Conductivity of Glass Melts -- 3.8 Illustrative Thermal Radiation Modeling Results. 327 $a3.9 Concluding Remarks -- References -- 4 Thermomechanical Behaviour During Forming of Silicate Glasses-Modelling and Characterization -- 4.1 Introduction -- 4.2 Rheological Behaviour of Silicate Glasses -- 4.2.1 Viscous Behaviour of Glasses -- 4.2.2 Viscoelastic Behaviour of Glasses -- 4.2.3 Maxwell Model -- 4.3 Relaxation Phenomena in Silicate Glasses -- 4.3.1 Structural Relaxation -- 4.3.2 Stress Relaxation -- 4.4 Modelling and Characterizations -- 4.4.1 Fictive Temperature and Glass Transition Temperature -- 4.4.2 Stress Relaxation Behaviour -- 4.4.3 Material Modelling -- 4.4.4 Benchmark Simulation -- 4.5 Conclusion -- References -- 5 Coloured Glass -- 5.1 Summary -- 5.2 Introduction and History -- 5.3 Light Absorption -- 5.3.1 Measuring Absorption -- 5.3.2 De-Excitation Processes -- 5.3.3 Interpreting Absorption Spectra-Peak Positions -- 5.3.4 Interpreting Absorption Spectra-The Effect of Host Composition -- 5.3.5 Consequences of Different Iron Oxidation States for Applications -- 5.4 Perceived Colour-Colour Coordinates -- 5.4.1 Optimising Iron Colour -- 5.5 Kinetics and Cooling -- 5.5.1 Redox Reactions with Two or More Redox Ions -- 5.5.2 Kinetics of Redox Reactions -- 5.5.3 Redox Reactions as a Function of Temperature -- 5.6 Rare Earth Elements and Optical Properties -- 5.7 Defects -- 5.8 Colouring Glasses by Nanoparticles -- 5.9 Glass Ceramics for Optical Devices -- 5.10 Periodic Structures -- References -- 6 Computer Modeling of Glass Structures and Properties -- 6.1 Introduction -- 6.2 Basics of Numerical Simulations -- 6.2.1 General Features -- 6.2.2 The Importance of Interatomic Potentials -- 6.2.3 Scheme of Molecular Dynamics Simulation -- 6.2.4 Practical Recipe for Numerical Simulation -- 6.3 Modeling of Glass Structures -- 6.3.1 Overall Structure and Short-Range Order. 327 $a6.3.2 Ring Size Distribution and Geometrical Modeling for Medium-Range Order -- 6.4 Modeling of Glass Properties -- 6.5 Experimental and Computational Complementarity -- 6.6 Perspectives -- References -- 7 Atomic Structure of Glasses Investigated by Diffraction and Scattering of Radiations -- 7.1 Diffraction-Elastic Scattering -- 7.1.1 X-Ray and Neutron Diffraction Method -- 7.1.2 Description of Glass Structure -- 7.1.3 Amplitude of the Scattered Field: The Form Factor -- 7.1.4 Diffracted Intensity -- 7.1.5 Structure of Vitreous Silica and Some Silicate and Borate Glasses -- 7.1.6 Neutron Diffraction: Isotopic Substitution -- 7.2 Inelastic Scattering -- 7.2.1 Inelastic Scattering Spectroscopy -- 7.2.2 Origin of the Scattering -- 7.2.3 Raman Selection Rules -- 7.2.4 Raman Spectroscopy in Silicate Glasses -- 7.3 Conclusion -- References -- 8 Melt-Derived Bioactive Glasses: Approaches to Improve Thermal Stability and Antibacterial Property by Structure-Property Correlation -- 8.1 Introduction -- 8.2 General Composition of Melt-Derived Bioactive Glasses -- 8.3 Glass Thermal Stability -- 8.4 Improving the Thermal Stability and Bioactivity Using Compositional Modifications -- 8.4.1 Incorporation of B2O3 -- 8.4.2 Increment of CaO -- 8.4.3 Incorporation of K2O -- 8.4.4 Incorporation of Li2O -- 8.4.5 Incorporation of MgO -- 8.4.6 Incorporation of SrO -- 8.4.7 Incorporation of ZnO -- 8.4.8 Increment of P2O5 -- 8.4.9 Incorporation of Fluoride -- 8.5 Antibacterial Properties -- 8.6 Conclusions and Future Trends -- References -- 9 Nuclear Waste Vitrification and Chemical Durability -- 9.1 Introduction -- 9.2 Waste Vitrification -- 9.2.1 Glasses for Waste Vitrification -- 9.2.2 Problem Species and Waste Loading -- 9.2.3 Vitrification Technologies -- 9.3 Durability -- 9.3.1 Thermal Durability -- 9.3.2 Mechanical Durability -- 9.3.3 Radiation Durability. 327 $a9.3.4 Chemical Durability Testing -- 9.3.5 Durability Behaviour Under Low Flow Conditions -- 9.3.6 Durability of Natural and Anthropogenic Analogue Glasses -- 9.4 Summary -- References -- 10 Glass-ceramics: A Potential Material for Energy Storage and Photonic Applications -- 10.1 Introduction -- 10.1.1 History -- 10.1.2 Definition of Glass-ceramics -- 10.1.3 Importance of Glass-ceramics -- 10.1.4 Crystallization of Glass -- 10.1.5 Fabrication Techniques -- 10.1.6 Properties -- 10.1.7 Applications -- 10.2 Glass-ceramics for Energy Storage -- 10.2.1 Introduction -- 10.2.2 Key Parameters for Evaluating Energy Storage Density and Efficiency -- 10.2.3 Value of Glass-ceramics for Energy Storage -- 10.2.4 Categorization of Glass-ceramics for Energy Storage Applications -- 10.2.5 Factors Affecting Energy Storage Properties of Glass-ceramics -- 10.2.6 Future Aspects -- 10.3 Glass-ceramics for Photonic Applications -- 10.3.1 Introduction -- 10.3.2 Classification of Glass-ceramics for Photonic Applications -- 10.3.3 Future Aspects -- References. 410 0$aAdvanced Structured Materials 606 $aMaterials science 615 0$aMaterials science. 676 $a780 702 $aAnnapurna$b K. 702 $aMolla$b Atiar Rahaman 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996499860603316 996 $aGlasses and glass-ceramics$93088785 997 $aUNISA