LEADER 04593nam 2200433 450 001 996499855103316 005 20230331063427.0 010 $a3-031-11401-9 035 $a(MiAaPQ)EBC7143467 035 $a(Au-PeEL)EBL7143467 035 $a(CKB)25402367300041 035 $a(PPN)266355188 035 $a(EXLCZ)9925402367300041 100 $a20230331d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aDigital twins $ebasics and applications /$fZhihan Lv, Elena Fersman, editors 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (102 pages) 311 08$aPrint version: Lv, Zhihan Digital Twins: Basics and Applications Cham : Springer International Publishing AG,c2022 9783031114007 320 $aIncludes bibliographical references. 327 $aIntro -- Contents -- Digital Twins Architecture -- 1 Why to Talk About Digital Twins? -- 2 The Main Digital Twin's Components -- 2.1 Physical System (PS) -- 2.2 Virtual System (VS) -- 2.3 Systems Data (SD) -- 2.4 Communication Interface (CI) -- 3 Is This a Digital Twin? -- 4 Practical Case Studies -- 4.1 Case Study I -- 4.2 Case Study II -- References -- Digital Twins for Physical Asset Lifecycle Management -- 1 Introduction -- 2 Digital Twin Asset Lifecycle Management (DTALM) -- 3 Digital Twin Essence -- 4 Digital Twin Systems -- 4.1 Physical Domain -- 4.2 Digital Domain -- 4.3 Physics-Based Generative Models for Digital Twins -- 4.4 Advances in Parameter Identifiability -- 5 Data-Driven Digital Twins -- 5.1 Statistical Learning Models -- 5.2 Machine Learning Models -- 5.3 Deep Learning Models -- 5.4 Industrial Digital Twin Applications for PALM -- References -- Digital Twins and Additive Manufacturing -- 1 Additive Manufacturing -- 2 Digital Twins -- 3 DTs for AM Needs and Challenges -- 3.1 Real Time Monitoring -- 3.2 Database and Models -- 3.3 Machine Learning -- 3.4 Internet of Things -- 4 Conclusions and Outlook -- References -- Agricultural Digital Twins -- 1 The Digital Twins of Agriculture -- 2 Digital Twins Build Smart Farms -- 2.1 Artificial Intelligence Predicts Plant Growth -- 2.2 Virtual Reality Simulation of 3D Digital Farm -- 2.3 Blockchain Technology Realizes Supply Chain Management -- 2.4 Problems that Still Exist in the Application of Digital Twins in the Agricultural Field -- 3 Conclusion -- References -- The Application of Digital Twins in the Field of Fashion -- 1 Digital Twins of Human Bodies -- 1.1 Virtual Human Models in Fashion Industry -- 1.2 Source Information for Generating Virtual Human Model -- 1.3 Tools for Virtual Body Model Digitalization -- 1.4 Virtual Fit Mannequin Generating -- 2 Digital Twins of Garment. 327 $a2.1 Structure of Virtual Fitting System -- 2.2 Generating Virtual Garment from Virtual Patterns -- 2.3 Generating Virtual Garment Directly on Virtual Human Model -- 3 Future Development -- References -- Digital Twins Collaboration in Industrial Manufacturing -- 1 Introduction -- 1.1 Contribution -- 1.2 Chapter Organization -- 2 Lightweight Framework of Digital Twins Collaboration for Industrial Manufacturing -- 2.1 Physical Layer -- 2.2 Digital Twins Layer -- 2.3 Industrial Technologies Layer -- 2.4 Application Layer -- 3 Digital Twins Collaboration in Industrial Manufacturing Use Cases -- 3.1 Energy Industry-Fault Diagnosis of Wind Turbines -- 3.2 Railway Industry-Predictive Maintenance -- 3.3 Logistics Industry-Dynamic Routing -- 4 Future Directions -- 4.1 Security and Privacy -- 4.2 Connectivity -- 4.3 Timing, Speed, and Response -- 4.4 Data Modelling -- 5 Conclusion -- References -- Social Media Perspectives on Digital Twins and the Digital Twins Maturity Model -- 1 Defining Digital Twins -- 2 Use of Social Media Analytics in Research -- 2.1 Social Media Analytics Methodology -- 2.2 Time Series Analysis of Tweets About Digital Twins -- 2.3 Unsupervised Clustering of the Digital Twin Tweets -- 2.4 Twitter Analysis by Industry -- 3 Background on Maturity Models -- 4 The Digital Twin Maturity Model -- 5 Conclusion and Future Work -- References. 606 $aDigital twins (Computer simulation) 615 0$aDigital twins (Computer simulation) 676 $a003.3 702 $aFersman$b Elena 702 $aLv$b Zhihan 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996499855103316 996 $aDigital twins$92480004 997 $aUNISA LEADER 03694nam 22006375 450 001 9910254621103321 005 20200705071132.0 010 $a3-319-20221-9 024 7 $a10.1007/978-3-319-20221-1 035 $a(CKB)3710000000452172 035 $a(EBL)3567932 035 $a(SSID)ssj0001534717 035 $a(PQKBManifestationID)11860398 035 $a(PQKBTitleCode)TC0001534717 035 $a(PQKBWorkID)11498114 035 $a(PQKB)10780790 035 $a(DE-He213)978-3-319-20221-1 035 $a(MiAaPQ)EBC3567932 035 $a(PPN)187690715 035 $a(EXLCZ)993710000000452172 100 $a20150724d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHadron Structure in Electroweak Precision Measurements /$fby Nathan L. Hall 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (127 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $aDoctoral thesis accepted by the University of Adelaide, Australia. 311 $a3-319-20220-0 320 $aIncludes bibliographical references. 327 $aIntroduction -- The Standard Model and beyond -- Precision tests of the SM -- Structure functions -- Adelaide-Jefferson Lab-Manitoba model -- The ?Z box corrections -- Electric and magnetic polarizabilities of the proton -- Quark-hadron duality -- Summary and conclusion. 330 $aThis thesis examines the ?Z box contribution to the weak charge of the proton. Here, by combining recent parity-violating electron-deuteron scattering data with our current understanding of parton distribution functions, the author shows that one can limit this model dependence. The resulting construction is a robust model of the ?? and ?Z structure functions that can also be used to study a variety of low-energy phenomena. Two such cases are discussed in this work, namely, the nucleon?s electromagnetic polarizabilities and quark-hadron duality.          By using phenomenological information to constrain the input structure functions, this important but previously poorly understood radiative correction is determined at the kinematics of the parity-violating experiment, QWEAK, to a degree of precision more than twice that of the previous best estimate.   A detailed investigation into available parametrizations of the electromagnetic and interference cross-sections indicates that earlier analyses suffered from the inability to correctly quantify their model dependence. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aParticles (Nuclear physics) 606 $aQuantum field theory 606 $aMathematical physics 606 $aElementary Particles, Quantum Field Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P23029 606 $aTheoretical, Mathematical and Computational Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19005 615 0$aParticles (Nuclear physics) 615 0$aQuantum field theory. 615 0$aMathematical physics. 615 14$aElementary Particles, Quantum Field Theory. 615 24$aTheoretical, Mathematical and Computational Physics. 676 $a530 700 $aHall$b Nathan L$4aut$4http://id.loc.gov/vocabulary/relators/aut$0805099 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254621103321 996 $aHadron Structure in Electroweak Precision Measurements$92522526 997 $aUNINA