LEADER 03349nam 2200457 450 001 996495164003316 005 20231110231120.0 010 $a9789811961762$b(electronic bk.) 010 $z9789811961755 035 $a(MiAaPQ)EBC7107656 035 $a(Au-PeEL)EBL7107656 035 $a(CKB)24996011900041 035 $a(PPN)265857651 035 $a(EXLCZ)9924996011900041 100 $a20230302d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMagnetic resonators $efeedback with magnetic field and magnetic cavity /$fC. S. Nikhil Kumar 210 1$aSingapore :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (105 pages) 225 1 $aSpringerBriefs in Applied Sciences and Technology 311 08$aPrint version: Nikhil Kumar, C. S. Magnetic Resonators Singapore : Springer,c2022 9789811961755 327 $aIntro -- Contents -- Abbreviations -- Notations -- List of Figures -- List of Tables -- 1 Introduction -- 1.1 Magnonic Crystals -- 1.1.1 Magnon-Based Computing -- 1.1.2 Magnetoelectronics and Magnon Spintronics -- 1.1.3 STNO Configurations -- 1.1.4 STNO Device Principle -- 1.1.5 Mutual Synchronization of STNOs Through Electrical Coupling -- 1.2 Landau-Lifshitz-Gilbert-Slonczewski Equation -- 1.2.1 Plane Wave Method -- 1.2.2 Micromagnetics -- 1.3 Summary -- References -- 2 Spin-Wave Excitation Patterns Generated by Spin-Torque Nano-Oscillators -- 2.1 Approximate Model -- 2.2 Micromagnetic Simulations -- 2.2.1 Forward Volume Spin Waves -- 2.2.2 Backward Volume and Surface Spin Waves -- 2.2.3 Multiple NC STNOs -- 2.3 Summary -- References -- 3 Coherent Spin-Wave Oscillations Through External Feedback -- 3.1 Spintronic Oscillator with Magnetic Field Feedback -- 3.1.1 Quasi-Static Simulations -- 3.1.2 Magnetization Dynamics -- 3.1.3 Simulation Results -- 3.2 Electrical Analogy -- 3.3 Summary -- References -- 4 Magnonic Spectra in 2D Antidot Magnonic Crystals with Line Defect -- 4.1 Plane Wave Method -- 4.1.1 Convergence -- 4.2 Eigenmodes -- 4.3 Micromagnetic Simulations -- 4.3.1 Magnonic Spectra -- 4.3.2 Antidot Magnonic Crystal Waveguide -- 4.3.3 Dispersion Analysis of an MC3 Cavity -- 4.4 Summary -- References -- 5 Sustaining Spin-Wave Oscillations Through Internal Feedback -- 5.1 Nanocontact STNO in MC Cavity -- 5.1.1 Design Methodology -- 5.1.2 Spin-Wave Dynamics with MCC-End Fire Antenna -- 5.1.3 Current-Induced Oersted Field in a Micromagnetic Simulation -- 5.1.4 Quality Factor Calculation -- 5.2 Phase Locking of Nanocontact STNOs-Broad Side Antenna -- 5.2.1 Symmetric Array of NC STNOs -- 5.2.2 Asymmetric Array of NC STNOs -- 5.2.3 Detuning of SWs in NC STNOs in MC Cavity -- 5.3 Summary -- References -- 6 Summary and Future Work. 327 $a6.1 Future Work -- References -- Publications. 410 0$aSpringerBriefs in Applied Sciences and Technology 606 $aCavity resonators 606 $aFeedback (Psychology) 615 0$aCavity resonators. 615 0$aFeedback (Psychology) 676 $a153.6 700 $aNikhil Kumar$b C. S.$01262379 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a996495164003316 996 $aMagnetic Resonators$92950630 997 $aUNISA