LEADER 09910nam 2200493 450 001 996490349603316 005 20230226123703.0 010 $a3-030-97493-6 035 $a(CKB)5840000000091671 035 $a(MiAaPQ)EBC7101929 035 $a(Au-PeEL)EBL7101929 035 $a(PPN)264953622 035 $a(EXLCZ)995840000000091671 100 $a20230226d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDissipative optical solitons /$fMa?rio F. S. Ferreira 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$dİ2022 215 $a1 online resource (369 pages) 225 1 $aSpringer Series in Optical Sciences 311 $a3-030-97492-8 327 $aIntro -- Contents -- Contributors -- Chapter 1: Dissipative Optical Solitons: An Introduction -- 1.1 Solitary Waves -- 1.2 Solitons in Optical Fibers -- 1.3 The Complex Ginzburg-Landau Equation -- 1.4 Dissipative Solitons -- 1.5 Dissipative Soliton Molecules -- 1.6 Recent Experimental Results on Pulsating Dissipative Solitons -- References -- Chapter 2: Dissipative Solitons in Passively Mode-Locked Lasers -- 2.1 From Solitons to Dissipative Solitons in Ultrafast Lasers -- 2.1.1 Early Advances Toward Soliton Lasers -- 2.1.2 Reconsidering the Value of Dissipation in Lasers -- 2.2 Signatures of Dissipative Soliton Dynamics -- 2.3 Dissipative Soliton Molecules -- 2.3.1 The Wealth of Soliton Interaction Processes Within a Laser Cavity -- 2.3.2 From Stationary to Pulsating Soliton Molecules -- 2.4 Toward Incoherent Dissipative Solitons -- 2.5 Summary and Prospects -- References -- Chapter 3: Dissipative Soliton Buildup Dynamics -- 3.1 Introduction -- 3.2 Conventional Soliton Buildup Dynamics in an Anomalous Dispersion Fiber Laser -- 3.3 Dissipative Solitons Buildup Dynamics in a Normal Dispersion Fiber Laser -- 3.4 Dissipative Soliton Buildup Dynamics in a Bidirectional Fiber Laser with Net-Normal Dispersion -- 3.5 Buildup Dynamics of Dissipative Soliton Molecules -- 3.6 Conclusion -- References -- Chapter 4: Dissipative Soliton Resonance -- 4.1 Introduction -- 4.1.1 Numerical Approach: Propagation in an Oscillator with a Saturable Absorber (SA) -- 4.1.2 DSR Pulses in Passively Mode-Locked Fiber Lasers -- 4.1.2.1 Experimental Features of DSR Pulses -- 4.1.2.2 Control of Pulse Characteristics in Dual-Amplifier Configuration -- 4.2 Multi-pulsing Instabilities in DSR Regime -- 4.3 Chapter Summary -- References -- Chapter 5: Ultra-Short High-Amplitude Dissipative Solitons -- 5.1 Introduction -- 5.2 The Cubic-Quintic Complex Ginzburg-Landau Equation. 327 $a5.3 Soliton Perturbation Theory -- 5.4 Method of Moments -- 5.5 Very-High Amplitude CGLE Solitons -- 5.6 Effects of Dispersion -- 5.7 Impact of Higher-Order Effects -- 5.7.1 Results of the Soliton Perturbation Theory -- 5.7.2 Linear Stability Analysis -- 5.7.3 Numerical Results -- 5.8 Conclusions -- References -- Chapter 6: Vector Dissipative Solitons -- 6.1 Introduction -- 6.2 DS Trapping in Fiber Lasers -- 6.3 Various Forms of VDSs -- 6.3.1 High-Order VDSs -- 6.3.2 Dark-Bright VDSs -- 6.3.3 Vector Soliton Molecules -- 6.3.4 Vector Noise-Like Pulses -- 6.4 Real-Time Dynamics of VDSs -- 6.4.1 Dispersive Fourier Transform Based Polarization Resolved Analysis -- 6.4.2 Real-Time Polarization Dynamics of VDSs -- 6.4.3 Pulsation of VDSs -- 6.5 Conclusions -- References -- Chapter 7: Dynamics of Pulsating Dissipative Solitons -- 7.1 Introduction -- 7.2 Theory of Pulsating Dissipative Solitons -- 7.2.1 Numerical Analysis of Pulsation Dynamics -- 7.2.2 Semi-Analytical Analysis of Pulsation Dynamics -- 7.3 Transient Behaviors of Pulsating Dissipative Solitons -- 7.3.1 Stationary Soliton -- 7.3.2 Single-Period Pulsating Soliton -- 7.3.3 Double-Period Pulsating Soliton -- 7.3.4 Periodic Soliton Explosion -- 7.3.5 Multi-Soliton Synchronous Pulsation -- 7.3.6 Pulsating Soliton Molecule -- 7.3.7 Multi-Soliton Asynchronous Pulsation -- References -- Chapter 8: Raman Dissipative Solitons -- 8.1 Introduction -- 8.2 Principle of Generation -- 8.3 Simulation -- 8.4 Brief Theory -- 8.5 Applications -- References -- Chapter 9: L-Band Wavelength Tunable Dissipative Soliton Fiber Laser -- 9.1 Introduction -- 9.2 Laser Design -- 9.3 Methods of Wavelength Tuning -- 9.3.1 Wavelength Tuning Based on Spectral Birefringence Filter with 45Tilted Fiber Grating -- 9.3.1.1 Laser Setup and Device Characteristics -- 9.3.1.2 Experimental Results and Discussions. 327 $a9.3.2 Wavelength Tuning Based on Tunable Filter with Fiber Taper -- 9.3.2.1 Laser Setup and Device Characteristics -- 9.3.2.2 Experimental Results and Discussions -- 9.3.3 Wavelength Tuning Based on Cavity Loss Control with Commercial Mechanical VOA -- 9.3.3.1 Laser Setup and Device Characteristics -- 9.3.3.2 Experimental Results and Discussions -- 9.3.4 Wavelength Tuning Based on Cavity Loss Control with Taper-Type VOA -- 9.3.4.1 Laser Setup and Device Property -- 9.3.4.2 Experimental Results and Discussions -- 9.3.5 Comparison with Different Wavelength Tuning Methods -- 9.4 Conclusion -- References -- Chapter 10: Multiplexed Dissipative Soliton Fiber Lasers -- 10.1 Introduction -- 10.2 Bidirectional Multiplexed Dissipative Soliton Fiber Lasers -- 10.2.1 SESAM -- 10.2.2 CNT -- 10.2.3 Graphene -- 10.2.4 NPR -- 10.2.5 Hybrid -- 10.3 Wavelength Multiplexed Dissipative Soliton Fiber Lasers -- 10.4 Polarization Multiplexed Dissipative Soliton Fiber Lasers -- 10.5 Conclusion and Outlook -- References -- Chapter 11: Multi-soliton Complex in Nonlinear Cavities -- 11.1 Introduction -- 11.2 Multi-soliton Complex in Mode-Locked Fiber Lasers -- 11.2.1 Multi-soliton States in Mode-Locked Lasers and Their Interaction -- 11.2.1.1 Soliton Molecule -- 11.2.1.2 Pulse Bunching and Harmonic Mode-Locking -- 11.2.1.3 Other States -- 11.2.2 Rapid Measurements of Multi-soliton Dynamics in Mode-Locked Fiber Lasers -- 11.2.2.1 Multi-soliton in Spatiotemporal Mode-Locked Fiber Lasers -- 11.3 Mutli-soliton Complex in Microcavities -- 11.3.1 Basic Principle of Coherently Pumped Solitons -- 11.3.2 Multi-soliton States and Their Interactions in Microcavities -- 11.3.2.1 Dispersive Wave Emission in Microcavities -- 11.3.2.2 From Soliton Molecules to Soliton Crystals in Microcavities -- 11.3.2.3 Multi-soliton State Using Advanced Pumping Schemes -- 11.4 Summary and Discussions. 327 $aReferences -- Chapter 12: Dissipative Solitons in Microresonators -- 12.1 Introduction -- 12.2 Modeling -- 12.2.1 Higher-Order Dispersion -- 12.2.2 Raman Effect -- 12.3 Dispersion Engineered Cavity Dynamics -- 12.3.1 Capabilities of Dispersion Engineering -- 12.3.2 Advanced Control of Dissipative Soliton Dynamics -- 12.3.3 Novel Phenomena in Dispersion-Tailored Microring Resonators -- 12.4 Soliton Comb Generation Schemes -- 12.4.1 Frequency Scanning -- 12.4.2 Power Kicking -- 12.4.3 Thermal Tuning -- 12.4.4 Self-Injection Locking and Laser-Based Configurations -- 12.5 Nonlinear Dynamics of DKS -- 12.6 Applications -- References -- Chapter 13: Vector Vortex Solitons and Soliton Control in Vertical-Cavity Surface-Emitting Lasers -- 13.1 Introduction -- 13.2 Mechanism of Bistability in Lasers with Frequency-Selective Feedback -- 13.3 Vector Vortex Solitons -- 13.3.1 What Are Vector Vortex Beams? -- 13.3.2 Experimental Setup -- 13.3.3 Principle Observations -- 13.3.4 Complex Hysteresis Loops -- 13.3.5 Influencing Polarization Selection by Intra-Cavity Waveplates -- 13.3.6 Interpretation -- 13.4 Flip-Flop Operation of Laser Cavity Solitons -- 13.4.1 Soliton Control in Systems with and Without Holding Beams -- 13.4.2 Experimental Setup -- 13.4.3 Experimental Results -- 13.5 Conclusions and Outlook -- References -- Chapter 14: Discrete Solitons of the Ginzburg-Landau Equation -- 14.1 Introduction -- 14.2 The Model and Linear Dispersion Relation -- 14.3 Dissipative Solitons of the DGLE -- 14.4 Saturable Nonlinearity and MI Analysis -- 14.5 Exact Dissipative Discrete Soliton Solutions -- 14.6 Conclusion -- References -- Chapter 15: Noise-Like Pulses in Mode-Locked Fiber Lasers -- 15.1 Introduction -- 15.2 Examples of NLP Lasers -- 15.3 Mechanisms of NLP Formation -- 15.3.1 Effect of Cavity Birefringence. 327 $a15.3.2 Soliton Collapse Due to Reverse Saturable Absorption -- 15.3.3 Raman-Driven NLP -- 15.3.4 NLP Formation in Amplifiers -- 15.4 Dynamics, Coherence and Stability of NLP Lasers -- 15.5 Applications of NLP Lasers -- 15.5.1 Metrology -- 15.5.2 Spectroscopy -- 15.5.3 Spectral Broadening and Supercontinuum Generation -- 15.5.4 Optical Coherence Tomography -- 15.5.5 Nonlinear Microscopy -- 15.6 Summary -- References -- Chapter 16: Dissipative Rogue Waves -- 16.1 Introduction -- 16.1.1 Rogue Waves in the Oceans -- 16.1.2 Introduction of Optical Rogue Waves -- 16.1.3 Real-Time Techniques for Observing Optical Rogue Waves -- 16.1.3.1 Dispersive-Fourier-Transform-Based Ultrafast Spectroscopy -- 16.1.3.2 Time Magnifier -- 16.2 Dissipative Rogue Waves -- 16.2.1 Rogue Waves in Dissipative Systems -- 16.2.2 Dissipative Rogue Waves in Ultrafast Lasers -- 16.2.3 Dissipative Rogue Waves in Microresonators -- 16.2.4 Dissipative Rogue Waves in Extended Systems -- 16.2.5 Optical Polarization Rogue Waves -- 16.3 Generating Mechanisms of Dissipative Rogue Waves -- 16.3.1 Two Interpretations -- 16.3.2 Are the Dissipative Rogue Waves Predictable? -- References. 410 0$aSpringer series in optical sciences. 606 $aLasers$xResonators 606 $aSolitons$xResearch 615 0$aLasers$xResonators. 615 0$aSolitons$xResearch. 676 $a621.366 700 $aFerreira$b Ma?rio F. S.$0976733 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996490349603316 996 $aDissipative Optical Solitons$92915909 997 $aUNISA