LEADER 02901nam 2200541 450 001 9910554240403321 005 20210330160419.0 010 $a0-300-25807-0 010 $a0300258070 (electronic bk.) 010 $a9780300258073 (electronic bk.) 010 $z9780300251746$b(hardcover) 010 $z0300251742$b(hardcover) 024 7 $a10.12987/9780300258073 035 $a(CKB)4100000011725439 035 $a(MiAaPQ)EBC6455821 035 $a(DE-B1597)583181 035 $a(DE-B1597)9780300258073 035 $a(StDuBDS)EDZ0002586525 035 $a(EXLCZ)994100000011725439 100 $a20210316d2021 uy| 0 101 0 $aeng 135 $auraz#---auuuu 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBitter shade $ethe ecological challenge of human consciousness /$fMichael R. Dove$b[electronic resource] 210 1$aNew Haven :$cYale University Press,$d2021. 215 $a1 online resource (xiv, 291 pages) $cillustrations, maps 225 1 $aYale agrarian studies series 225 1 $aYale scholarship online 300 $aPublished with assistance from the Council on Southeast Asia Studies at Yale University. 300 $aAlso issued in print: 2021. 311 $a0-300-25174-2 320 $aIncludes bibliographical references and index. 327 $aNonhumans and the Paradox of the Human -- Pig-Humans and Human-Pigs: Perspectivism in Dayak Myth and Ritual -- Environmental Uncertainty and Augural Contingency -- A Non-Western Panopticon: The Yogyakarta Sultanate and Merapi Volcano -- "Bitter Shade": Signs and Things in Pakistani Agro-Forestry -- Culture, Agriculture, and Politics of Rice in Java -- Historic Parting of the Wild from the Civilized in Pakistan -- Ritual, Myth, and the Rise of "Greedy Rice" -- Weedy Signs of Intent and Error -- Seeing "Life Itself " -- Appendix: Principles of Augural Interpretation. 330 8 $aThis book asks an age-old question about the relationship between human consciousness and the environment: How do we think about our own thoughts and actions? How can we transcend the exigencies of daily life? How can we achieve sufficient distance from our own everyday realities to think and act more sustainably? To address these questions, Michael R. Dove draws on the results of decades of research in South and Southeast Asia on how local cultures have circumvented the 'curse of consciousness' - the paradox that we cannot completely comprehend the ecosystem of which we are part. 410 0$aYale agrarian studies series. 410 0$aYale scholarship online. 606 $aHuman ecology 615 0$aHuman ecology. 676 $a820.936 700 $aDove$b Michael$f1949-$01085376 801 0$bStDuBDS 801 1$bStDuBDS 906 $aBOOK 912 $a9910554240403321 996 $aBitter shade$92820122 997 $aUNINA LEADER 05452nam 2200517 450 001 996490271503316 005 20231110225229.0 010 $a3-031-12616-5 035 $a(CKB)5840000000091739 035 $a(MiAaPQ)EBC7101860 035 $a(Au-PeEL)EBL7101860 035 $a(PPN)264952634 035 $a(EXLCZ)995840000000091739 100 $a20230223d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNumerical methods for mixed finite element problems $eapplications to incompressible materials and contact problems /$fJean Deteix, Thierno Diop and Michel Fortin 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (119 pages) 225 1 $aLecture Notes in Mathematics ;$vv.2318 311 $a3-031-12615-7 320 $aIncludes bibliographical references and index. 327 $aIntro -- Contents -- 1 Introduction -- 2 Mixed Problems -- 2.1 Some Reminders About Mixed Problems -- 2.1.1 The Saddle Point Formulation -- 2.1.2 Existence of a Solution -- 2.1.3 Dual Problem -- 2.1.4 A More General Case: A Regular Perturbation -- 2.1.5 The Case -- 2.2 The Discrete Problem -- 2.2.1 Error Estimates -- 2.2.2 The Matricial Form of the Discrete Problem -- 2.2.3 The Discrete Dual Problem: The Schur Complement -- 2.3 Augmented Lagrangian -- 2.3.1 Augmented or Regularised Lagrangians -- 2.3.2 Discrete Augmented Lagrangian in Matrix Form -- 2.3.3 Augmented Lagrangian and the Condition Number of the Dual Problem -- 2.3.4 Augmented Lagrangian: An Iterated Penalty -- 3 Iterative Solvers for Mixed Problems -- 3.1 Classical Iterative Methods -- 3.1.1 Some General Points -- Linear Algebra and Optimisation -- Norms -- Krylov Subspace -- Preconditioning -- 3.1.2 The Preconditioned Conjugate Gradient Method -- 3.1.3 Constrained Problems: Projected Gradient and Variants -- Equality Constraints: The Projected Gradient Method -- Inequality Constraints -- Positivity Constraints -- Convex Constraints -- 3.1.4 Hierarchical Basis and Multigrid Preconditioning -- 3.1.5 Conjugate Residuals, Minres, Gmres and the Generalised Conjugate Residual Algorithm -- The Generalised Conjugate Residual Method -- The Left Preconditioning -- The Right Preconditioning -- The Gram-Schmidt Algorithm -- GCR for Mixed Problems -- 3.2 Preconditioners for the Mixed Problem -- 3.2.1 Factorisation of the System -- Solving Using the Factorisation -- 3.2.2 Approximate Solvers for the Schur Complement and the Uzawa Algorithm -- The Uzawa Algorithm -- 3.2.3 The General Preconditioned Algorithm -- 3.2.4 Augmented Lagrangian as a Perturbed Problem -- 4 Numerical Results: Cases Where Q= Q -- 4.1 Mixed Laplacian Problem -- 4.1.1 Formulation of the Problem. 327 $a4.1.2 Discrete Problem and Classic Numerical Methods -- The Augmented Lagrangian Formulation -- 4.1.3 A Numerical Example -- 4.2 Application to Incompressible Elasticity -- 4.2.1 Nearly Incompressible Linear Elasticity -- 4.2.2 Neo-Hookean and Mooney-Rivlin Materials -- Mixed Formulation for Mooney-Rivlin Materials -- 4.2.3 Numerical Results for the Linear Elasticity Problem -- 4.2.4 The Mixed-GMP-GCR Method -- Approximate Solver in u -- 4.2.5 The Test Case -- Number of Iterations and Mesh Size -- Comparison of the Preconditioners of Sect.3.2 -- Effect of the Solver in u -- 4.2.6 Large Deformation Problems -- Neo-Hookean Material -- Mooney-Rivlin Material -- 4.3 Navier-Stokes Equations -- 4.3.1 A Direct Iteration: Regularising the Problem -- 4.3.2 A Toy Problem -- 5 Contact Problems: A Case Where Q?Q -- 5.1 Imposing Dirichlet's Condition Through a Multiplier -- 5.1.1 and Its Dual -- 5.1.2 A Steklov-Poincaré operator -- Using This as a Solver -- 5.1.3 Discrete Problems -- The Matrix Form and the Discrete Schur Complement -- 5.1.4 A Discrete Steklov-Poincaré Operator -- 5.1.5 Computational Issues, Approximate Scalar Product -- Simplified Forms of the ps: [/EMC pdfmark [/Subtype /Span /ActualText (script upper S script upper P Subscript h) /StPNE pdfmark [/StBMC pdfmarkSPhps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark Operator and Preconditioning -- 5.1.6 The Formulation -- The Choice of h -- 5.1.7 A Toy Model for the Contact Problem -- The Discrete Formulation -- The Active Set Strategy -- 5.2 Sliding Contact -- 5.2.1 The Discrete Contact Problem -- Contact Status -- 5.2.2 The Algorithm for Sliding Contact -- A Newton Method -- The Active Set Strategy -- 5.2.3 A Numerical Example of Contact Problem -- 6 Solving Problems with More Than One Constraint -- 6.1 A Model Problem -- 6.2 Interlaced Method -- 6.3 Preconditioners Based on Factorisation. 327 $a6.3.1 The Sequential Method -- 6.4 An Alternating Procedure -- 7 Conclusion -- Bibliography -- Index. 410 0$aLecture Notes in Mathematics 606 $aFinite element method 606 $aMètode dels elements finits$2thub 608 $aLlibres electrònics$2thub 615 0$aFinite element method. 615 7$aMètode dels elements finits 676 $a620.00151535 700 $aDeteix$b Jean$01258294 702 $aDiop$b Thierno$c(Mathematician), 702 $aFortin$b Michel 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996490271503316 996 $aNumerical methods for mixed finite element problems$93035942 997 $aUNISA