LEADER 02284nam 2200469 450 001 996475871103316 005 20221204081123.0 010 $a9783031039423$b(electronic bk.) 010 $z9783031039416 035 $a(MiAaPQ)EBC6992068 035 $a(Au-PeEL)EBL6992068 035 $a(CKB)22444051700041 035 $a(OCoLC)1304341985 035 $a(PPN)269152873 035 $a(EXLCZ)9922444051700041 100 $a20221204d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntermittency equation for transitional flow /$fEkachai Juntasaro 210 1$aCham, Switzerland :$cSpringer International Publishing,$d[2022] 210 4$dİ2022 215 $a1 online resource (91 pages) $cillustrations (chiefly color) 225 1 $aSpringerBriefs in Applied Sciences and Technology. 311 08$aPrint version: Juntasaro, Ekachai Intermittency Equation for Transitional Flow Cham : Springer International Publishing AG,c2022 9783031039416 327 $aChapter 1. Introduction --Chapter 2. Derivation of Intermittency Equation --Chapter 3. Modeling Concept and Formulation --Chapter 4. Model Constant Calibration --Chapter 5. Model Validation --Chapter 6. Application Test Case. 330 $aThis book provides the intermittency equation that is derived a priori. Since the intermittency equation is mathematically obtained, the resulting gamma transition model no longer requires any extra parameters and terms to explicitly account for free-stream turbulence and pressure gradient like the previous transition models. Instead, the present gamma transition model can naturally predict natural transition and effects of free-stream turbulence and pressure gradient on the transition process. 410 0$aSpringerBriefs in Applied Sciences and Technology. 606 $aTransition flow 606 $aTransition flow$vCongresses 615 0$aTransition flow. 615 0$aTransition flow 676 $a620.1064 700 $aJuntasaro$b Ekachai$01227821 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a996475871103316 996 $aIntermittency Equation for Transitional Flow$92850808 997 $aUNISA