LEADER 03195nam 2200601 450 001 996466869303316 005 20220905221700.0 010 $a3-540-47146-4 024 7 $a10.1007/BFb0093846 035 $a(CKB)1000000000437027 035 $a(SSID)ssj0000327300 035 $a(PQKBManifestationID)12083598 035 $a(PQKBTitleCode)TC0000327300 035 $a(PQKBWorkID)10298456 035 $a(PQKB)11639402 035 $a(DE-He213)978-3-540-47146-2 035 $a(MiAaPQ)EBC5591389 035 $a(Au-PeEL)EBL5591389 035 $a(OCoLC)1066200145 035 $a(MiAaPQ)EBC6841854 035 $a(Au-PeEL)EBL6841854 035 $a(PPN)155172905 035 $a(EXLCZ)991000000000437027 100 $a20220905d1990 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aTopics in Nevanlinna theory /$fSerge Lang, William Cherry 205 $a1st ed. 1990. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer,$d[1990] 210 4$dİ1990 215 $a1 online resource (CLXXXIV, 180 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1433 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-52785-0 320 $aIncludes bibliographical references (pages [169]-171) and index. 327 $aNevanlinna theory in one variable -- Equidimensional higher dimensional theory -- Nevanlinna Theory for Meromorphic Functions on Coverings of C -- Equidimensional Nevanlinna Theory on Coverings of Cn. 330 $aThese are notes of lectures on Nevanlinna theory, in the classical case of meromorphic functions, and the generalization by Carlson-Griffith to equidimensional holomorphic maps using as domain space finite coverings of C resp. Cn. Conjecturally best possible error terms are obtained following a method of Ahlfors and Wong. This is especially significant when obtaining uniformity for the error term w.r.t. coverings, since the analytic yields case a strong version of Vojta's conjectures in the number-theoretic case involving the theory of heights. The counting function for the ramified locus in the analytic case is the analogue of the normalized logarithmetic discriminant in the number-theoretic case, and is seen to occur with the expected coefficient 1. The error terms are given involving an approximating function (type function) similar to the probabilistic type function of Khitchine in number theory. The leisurely exposition allows readers with no background in Nevanlinna Theory to approach some of the basic remaining problems around the error term. It may be used as a continuation of a graduate course in complex analysis, also leading into complex differential geometry. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1433. 606 $aNevanlinna theory 615 0$aNevanlinna theory. 676 $a515 700 $aLang$b Serge$f1927-2005,$01160 702 $aCherry$b William$f1966- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466869303316 996 $aTopics in Nevanlinna Theory$9383042 997 $aUNISA