LEADER 03075nam 2200625 450 001 996466865903316 005 20220820113819.0 010 $a3-540-69666-0 024 7 $a10.1007/BFb0095931 035 $a(CKB)1000000000437333 035 $a(SSID)ssj0000324948 035 $a(PQKBManifestationID)12117212 035 $a(PQKBTitleCode)TC0000324948 035 $a(PQKBWorkID)10320052 035 $a(PQKB)10865332 035 $a(DE-He213)978-3-540-69666-7 035 $a(MiAaPQ)EBC5596355 035 $a(Au-PeEL)EBL5596355 035 $a(OCoLC)1076229867 035 $a(MiAaPQ)EBC6819238 035 $a(Au-PeEL)EBL6819238 035 $a(OCoLC)1287136151 035 $a(PPN)155205668 035 $a(EXLCZ)991000000000437333 100 $a20220820d1998 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aModuli of supersingular Abelian varieties /$fKe-Zheng Li, Frans Oort 205 $a1st ed. 1998. 210 1$aBerlin ;$aHeidelberg :$cSpringer-Verlag,$d[1998] 210 4$d©1998 215 $a1 online resource (IX, 116 p.) 225 1 $aLecture Notes in Mathematics ;$vVolume 1680 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-63923-3 327 $aSupersingular abelian varieties -- Some prerequisites about group schemes -- Flag type quotients -- Main results on S g,1 -- Prerequisites about Dieudonné modules -- PFTQs of Dieudonné modules over W -- Moduli of rigid PFTQs of Dieudonné modules -- Some class numbers -- Examples on S g,1 -- Main results on S g,d -- Proofs of the propositions on FTQs -- Examples on S g,d (d>1) -- A scheme-theoretic definition of supersingularity. 330 $aAbelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description of various structures. For low dimensions the moduli of supersingular abelian varieties is by now well understood. In this book we provide a description of the supersingular locus in all dimensions, in particular we compute the dimension of it: it turns out to be equal to Äg.g/4Ü, and we express the number of components as a class number, thus completing a long historical line where special cases were studied and general results were conjectured (Deuring, Hasse, Igusa, Oda-Oort, Katsura-Oort). 410 0$aLecture notes in mathematics (Springer-Verlag) ;$vVolume 1680. 606 $aGeometry, Algebraic 606 $aAbelian varieties 615 0$aGeometry, Algebraic. 615 0$aAbelian varieties. 676 $a516.35 700 $aLi$b Ke-Zheng$f1949-$061752 702 $aOort$b Frans$f1935- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466865903316 996 $aModuli of supersingular abelian varieties$9261847 997 $aUNISA