LEADER 03347nam 2200637 450 001 996466863503316 005 20220910150329.0 010 $a3-540-39447-8 024 7 $a10.1007/BFb0062089 035 $a(CKB)1000000000437830 035 $a(SSID)ssj0000324717 035 $a(PQKBManifestationID)12069550 035 $a(PQKBTitleCode)TC0000324717 035 $a(PQKBWorkID)10315376 035 $a(PQKB)10223578 035 $a(DE-He213)978-3-540-39447-1 035 $a(MiAaPQ)EBC5591981 035 $a(Au-PeEL)EBL5591981 035 $a(OCoLC)1066181484 035 $a(MiAaPQ)EBC6841916 035 $a(Au-PeEL)EBL6841916 035 $a(OCoLC)1292363677 035 $a(PPN)155214241 035 $a(EXLCZ)991000000000437830 100 $a20220910d1983 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aMatrix pencils $eproceedings of a conference held at Pite Havsbad, Sweden, March 22-24, 1982 /$fedited by B. Kagstro?m and A. Ruhe 205 $a1st ed. 1983. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1983] 210 4$dİ1983 215 $a1 online resource (XI, 297 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v973 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-11983-3 327 $aThe condition number of equivalence transformations that block diagonalize matrix pencils -- An approach to solving the spectral problem of A-?B -- On computing the Kronecker canonical form of regular (A-?B)-pencils -- Reducing subspaces: Definitions, properties and algorithms -- Differential/algebraic systems and matrix pencils -- Approximation of eigenvalues defined by ordinary differential equations with the Tau method -- The two-sided arnoldi algorithm for nonsymmetric eigenvalue problems -- Projection methods for solving large sparse eigenvalue problems -- The generalized eigenvalue problem in shipdesign and offshore industry ? a comparison of traditional methods with the lanczos process -- On the practical use of the lanczos algorithm in finite element applications to vibration and bifurcation problems -- Implementation and applications of the spectral transformation lanczos algorithm -- Preconditioned iterative methods for the generalized eigenvalue problem -- On bounds for symmetric eigenvalue problems -- A method for computing the generalized singular value decomposition -- Perturbation analysis for the generalized eigenvalue and the generalized singular value problem -- A generalized SVD analysis of some weighting methods for equality constrained least squares -- On angles between subspaces of a finite dimensional inner product space -- The multivariate calibration problem in chemistry solved by the PLS method. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v973 606 $aMatrix pencils 606 $aEigenvalues 606 $aNumerical analysis 615 0$aMatrix pencils. 615 0$aEigenvalues. 615 0$aNumerical analysis. 676 $a518 702 $aRuhe$b Axel H. 702 $aKa?gstro?m$b B$g(Bo), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466863503316 996 $aMatrix pencils$980033 997 $aUNISA LEADER 01761oam 22003974a 450 001 9910969707703321 005 20250326172412.0 035 $a(CKB)5600000000001294 035 $a(OCoLC)1259322054 035 $a(MdBmJHUP)muse99787 035 $a(MiAaPQ)EBC6647431 035 $a(Au-PeEL)EBL6647431 035 $a(EXLCZ)995600000000001294 100 $a20210703d2021 uy 0 101 0 $aeng 135 $aur|||||||nn|n 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Military in Burma/Myanmar$eOn the Longevity of Tatmadaw Rule and Influence 205 $a1st ed. 210 1$aSingapore :$cISEAS - Yusof Ishak Institute,$d2021. 210 4$dİ2021. 215 $a1 online resource (1 online resource 45 p.) 300 $aDescription based upon print version of record. 311 08$a9789814951715 311 08$a9814951714 330 $aThe Myanmar military has dominated that complex country for most of the period since independence in 1948. The fourth coup of 1 February 2021 was the latest by the military to control those aspects of society it deemed essential to its own interests, and its perception of state interests.The military's institutional power was variously maintained by rule by decree, through political parties it founded and controlled, and through constitutional provisions it wrote that could not be amended without its approval.This fourth coup seems a product of personal demands for power between Senior General. 676 $a320.9591 700 $aSteinberg$b David I.$f1928-2024.$01800380 801 0$bMdBmJHUP 801 1$bMdBmJHUP 906 $aBOOK 912 $a9910969707703321 996 $aThe Military in Burma$94345140 997 $aUNINA