LEADER 02364nam 2200649 450 001 996466862903316 005 20220823080019.0 010 $a3-540-36372-6 024 7 $a10.1007/BFb0061269 035 $a(CKB)1000000000438635 035 $a(SSID)ssj0000323726 035 $a(PQKBManifestationID)12117073 035 $a(PQKBTitleCode)TC0000323726 035 $a(PQKBWorkID)10301529 035 $a(PQKB)11785203 035 $a(DE-He213)978-3-540-36372-9 035 $a(MiAaPQ)EBC5610298 035 $a(Au-PeEL)EBL5610298 035 $a(OCoLC)1078997963 035 $a(MiAaPQ)EBC6819031 035 $a(Au-PeEL)EBL6819031 035 $a(OCoLC)793077909 035 $a(PPN)155182773 035 $a(EXLCZ)991000000000438635 100 $a20220823d1970 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aHarmonic analysis on reductive p-adic groups /$fHarish-Chandra ; notes by G. van Dijk 205 $a1st ed. 1970. 210 1$aBerlin ;$aHeidelberg ;$aNew York :$cSpringer-Verlag,$d[1970] 210 4$dİ1970 215 $a1 online resource (VI, 130 p.) 225 1 $aLecture notes in mathematics ;$v162 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-05189-9 311 $a3-540-05189-9 327 $aExistence of characters for the discrete series -- Existence of characters in the general case -- Supercusp forms and supercuspidal representations -- The space A(G, ?) -- The behavior of the characters of the supercuspidal representations on the regular set -- The mapping "Ff" (char ?=0) -- The local summability of (char ?=0) -- The local summability of the characters of the supercuspidal representations (char ?=0). 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v162. 606 $ap-adic groups 606 $aHarmonic analysis 606 $aFourier analysis. 615 0$ap-adic groups. 615 0$aHarmonic analysis. 615 0$aFourier analysis. . 676 $a515.2433 700 $aHarish-Chandra$b Bhartendu$01253609 702 $aDijk$b Gerrit van$f1939- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466862903316 996 $aHarmonic analysis on reductive p-adic groups$92906935 997 $aUNISA