LEADER 02838nam 2200637 450 001 996466857803316 005 20220910151032.0 010 $a3-540-39103-7 024 7 $a10.1007/BFb0099117 035 $a(CKB)1000000000437710 035 $a(SSID)ssj0000326927 035 $a(PQKBManifestationID)12081523 035 $a(PQKBTitleCode)TC0000326927 035 $a(PQKBWorkID)10316354 035 $a(PQKB)10595052 035 $a(DE-He213)978-3-540-39103-6 035 $a(MiAaPQ)EBC5591684 035 $a(Au-PeEL)EBL5591684 035 $a(OCoLC)1066185586 035 $a(MiAaPQ)EBC6841915 035 $a(Au-PeEL)EBL6841915 035 $a(OCoLC)793078867 035 $a(PPN)155234366 035 $a(EXLCZ)991000000000437710 100 $a20220910d1984 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aStochastic analysis and applications $eproceedings of the international conference held in Swansea, April 11-15, 1983 /$fedited by A. Truman and D. Williams 205 $a1st ed. 1984. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1984] 210 4$d©1984 215 $a1 online resource (VIII, 204 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1095 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-13891-9 327 $aNewtonian diffusions and planets, with a remark on non-standard Dirichlet forms and polymers -- The equivalence of ensembles in statistical mechanics -- The uniqueness of regular DLR measures for certain one-dimensional spin systems -- Generalised Weyl Operators -- One ? dimensional stochastic differential equations involving the local times of the unknown process -- Time changes of Brownian motion and the conditional excursion theorem -- On square-root boundaries for Bessel processes, and pole-seeking Brownian motion -- Distributional approximations for networks of quasireversible queues -- Some geometric aspects of potential theory -- BM(?3) and its area integral £ ?×d? -- The unique factorisation of Brownian products -- Some integral equalities in Wiener-Hopf theory -- A differential equation in Wiener-Hopf theory. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1095 606 $aDistribution (Probability theory) 606 $aMathematics 606 $aStochastic analysis 615 0$aDistribution (Probability theory) 615 0$aMathematics. 615 0$aStochastic analysis. 676 $a519.2 702 $aWilliams$b D$g(David),$f1938- 702 $aTruman$b A$g(Aubrey), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466857803316 996 $aStochastic analysis and applications$979842 997 $aUNISA