LEADER 02312oam 2200577 450 001 996466857703316 005 20220601114643.0 010 $a3-540-68521-9 024 7 $a10.1007/978-3-540-68521-0 035 $a(CKB)1000000000437316 035 $a(SSID)ssj0000324886 035 $a(PQKBManifestationID)12124433 035 $a(PQKBTitleCode)TC0000324886 035 $a(PQKBWorkID)10322481 035 $a(PQKB)11216380 035 $a(DE-He213)978-3-540-68521-0 035 $a(MiAaPQ)EBC3088526 035 $a(MiAaPQ)EBC6485915 035 $a(PPN)155184598 035 $a(EXLCZ)991000000000437316 100 $a20210714d1998 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aModel theory and algebraic geometry $ean introduction to E. Hrushovski's proof of the geometric Mordell-Lang conjecture /$fElisabeth Bouscaren, editor 205 $a1st ed. 1998. 210 1$aBerlin ;$aHeidelberg :$cSpringer Verlag,$d[1998] 210 4$d©1998 215 $a1 online resource (XVI, 216 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1696 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-64863-1 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $ato model theory -- to stability theory and Morley rank -- Omega-stable groups -- Model theory of algebraically closed fields -- to abelian varieties and the Mordell-Lang conjecture -- The model-theoretic content of Lang?s conjecture -- Zariski geometries -- Differentially closed fields -- Separably closed fields -- Proof of the Mordell-Lang conjecture for function fields -- Proof of Manin?s theorem by reduction to positive characteristic. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1696 606 $aArithmetical algebraic geometry$vTextbooks 606 $aModel theory 615 0$aArithmetical algebraic geometry 615 0$aModel theory. 676 $a516.35 686 $a03C60$2msc 702 $aBouscaren$b Elisabeth$f1956- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 906 $aBOOK 912 $a996466857703316 996 $aModel theory and algebraic geometry$978161 997 $aUNISA