LEADER 01889nam 2200613 450 001 996466854803316 005 20220304151105.0 010 $a3-540-38003-5 024 7 $a10.1007/BFb0060912 035 $a(CKB)1000000000438500 035 $a(SSID)ssj0000321277 035 $a(PQKBManifestationID)12097321 035 $a(PQKBTitleCode)TC0000321277 035 $a(PQKBWorkID)10263237 035 $a(PQKB)10215140 035 $a(DE-He213)978-3-540-38003-0 035 $a(MiAaPQ)EBC5595794 035 $a(Au-PeEL)EBL5595794 035 $a(OCoLC)1076258197 035 $a(MiAaPQ)EBC6842685 035 $a(Au-PeEL)EBL6842685 035 $a(OCoLC)1058131214 035 $a(PPN)155212613 035 $a(EXLCZ)991000000000438500 100 $a20220304d1972 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAnalytic capacity and measure /$fJ. Garnett 205 $a1st ed. 1972. 210 1$aBerlin :$cSpringer,$d[1972] 210 4$dİ1972 215 $a1 online resource (IV, 141 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v297 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-06073-1 327 $aAnalytic capacity -- The cauchy transform -- Hausdorff measure -- Some examples -- Applications to approximation. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v297 606 $aAnalytic functions 606 $aApproximation theory$xData processing 615 0$aAnalytic functions. 615 0$aApproximation theory$xData processing. 676 $a515.9 686 $a30C85$2msc 700 $aGarnett$b J.$01220909 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466854803316 996 $aAnalytic capacity and measure$92830367 997 $aUNISA