LEADER 04088nam 2200493 450 001 996466848303316 005 20220723132458.0 010 $a3-030-87163-0 010 $a9783030871635$b(eBook) 010 $a3030871630$b(eBook) 010 $z9783030871628$b(print) 035 $a(CKB)5470000001298865 035 $a(MiAaPQ)EBC6796436 035 $a(Au-PeEL)EBL6796436 035 $a(OCoLC)1282004508 035 $a(PPN)258298111 035 $a(EXLCZ)995470000001298865 100 $a20220723d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLectures on the mechanical foundations of thermodynamics /$fMichele Campisi 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$dİ2021 215 $a1 online resource (xv, 91 pages) $cillustrations 225 1 $aSpringerBriefs in physics 311 $a3-030-87162-2 320 $aIncludes bibliographical references. 327 $aIntro -- Foreword -- Preface -- References -- Contents -- 1 The Constitutive Statements of Thermodynamics -- 1.1 First and Second Law -- 1.1.1 First Law of Thermodynamics -- 1.1.2 Second Law of Thermodynamics -- 1.2 Massieu Potentials -- 1.2.1 The ?,V Potential ?F (Free Entropy) -- 1.2.2 The E,? Potential ?H -- 1.2.3 The ?,? Potential ?G -- 1.2.4 The ?,V,? Massieu Grand Potential -- 1.3 Common Thermodynamic Potentials -- 1.3.1 The S,V Internal Energy E -- 1.3.2 The T,V Helmholtz Free Energy F -- 1.3.3 The S,P Enthalpy H -- 1.3.4 The T,P Gibbs Free Energy G -- 1.3.5 The T,V,µ, Grand Potential -- References -- 2 Minimal Mechanical Model of Thermodynamics -- 2.1 A Particle in a 1D Box -- 2.1.1 Remarks -- 2.2 Helmholtz Theorem -- 2.3 First Encounter with Ergodicity and the Microcanonical Ensemble -- 2.4 Non-uniqueness of Integrating Factors -- 2.5 Examples and Applications -- 2.5.1 Thermodynamics of a Harmonic Oscillator -- 2.5.2 The Peculiar Thermodynamics of a Log-Oscillator -- 2.5.3 Particle in a Double Well Potential -- References -- 3 The Microcanonical Ensemble -- 3.1 Many-Body Model of Thermodynamics -- 3.2 Remarks on Ergodicity -- 3.2.1 Metric Indecomposability -- 3.2.2 The Invariant Measure -- 3.3 Properties of the Structure Function -- 3.4 Ideal Gas -- 3.4.1 Remarks -- 3.5 Some History -- 3.5.1 Boltzmann Expressions of Microcanonical Entropy -- References -- 4 The Canonical Ensemble -- 4.1 A System in Weak Interaction with a Large Ideal Gas -- 4.2 Validity of the Heat Theorem within the Canonical Ensemble -- 4.3 Properties of the Partition Function -- 4.4 Ideal Gas -- 4.5 Linear Response Coefficients and Fluctuations -- 4.6 Finite Bath Ensemble -- 4.7 A System in Weak Contact with a Logarithmic Oscillator -- References -- 5 The TP Ensemble -- 5.1 A System in Contact with a Thermal Reservoir and Subject to a Constant Pressure. 327 $a5.2 Validity of the Heat Theorem within the TP Ensemble -- 5.3 Fluctuations -- 5.4 Ideal Gas -- 5.5 Thermally Insulated System Subject to a Constant Pressure -- References -- 6 The Grandcanonical Ensemble -- 6.1 Relaxing the Constraint on N -- 6.2 A Slight Detour: Gibbs ``Correct'' Counting -- 6.3 Validity of the Heat Theorem within the Grandcanonical Ensemble -- 6.4 Ideal Gas -- 6.4.1 Fluctuations -- 6.5 Remarks -- References -- 7 Ensemble (in)-Equivalence -- 7.1 The Problem -- 7.2 Full Equivalence -- 7.3 Equivalence -- 7.3.1 Hilbert and Dunkel Model of Evaporation -- 7.3.2 The Saddle Point Approximation -- 7.4 Partial Equivalence -- 7.5 Inequivalence -- 7.5.1 Thirring Artificial Model of a Star -- 7.6 (In)-equivalent Expressions of the Microcanonical Entropy -- References. 410 0$aSpringerBriefs in physics. 606 $aThermodynamics 615 0$aThermodynamics. 676 $a536.7 700 $aCampisi$b Michele$01071985 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466848303316 996 $aLectures on the Mechanical Foundations of Thermodynamics$92568140 997 $aUNISA