LEADER 03486nam 22005775 450 001 996466831403316 005 20200706232409.0 010 $a3-540-37381-0 024 7 $a10.1007/BFb0009678 035 $a(CKB)1000000000229834 035 $a(DE-He213)978-3-540-37381-0 035 $a(PPN)15519514X 035 $a(EXLCZ)991000000000229834 100 $a20121227d1977 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHarmonic Analysis$b[electronic resource] $eOn the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory /$fby V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova, I. T. Todorov 205 $a1st ed. 1977. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1977. 215 $a1 online resource (X, 283 p.) 225 1 $aLecture Notes in Physics,$x0075-8450 ;$v63 311 $a3-540-08150-X 327 $a1. Group structure. Preliminaries -- 2. Induced representations. Definition and various realizations -- 3. Further properties of the elementary representations -- 4. Intertwining operators: X-space realization -- 5. Momentum space expansion of the intertwining distribution and positivity -- 6. Nondecomposable representations and intertwining differential operators -- 7. Discrete and general properties of the discrete series -- 8. The Plancheral theorem. Concluding remarks -- 9. The Kronecker product of two elementary representations -- 10. Construction of the Clebsch Gordan expansion -- 11. Special cases and further properties of the expansion formula -- 12. Renormalizable models of self-interacting scalar fields. Dynamical equations for Green functions -- 13. Invariance and invariant solutions of the dynamical equations. Conformal partial wave expansion for the Euclidean Green functions -- 14. Implications of the dynamical equations. Pole structure of conformal partial waves -- 15. Another form of the conformal expansion, involving a Minkowski momentum space integral. The Q-kernels -- 16. The problem of crossing symmetry. Concluding remarks. 410 0$aLecture Notes in Physics,$x0075-8450 ;$v63 606 $aQuantum field theory 606 $aString theory 606 $aAcoustics 606 $aHarmonic analysis 606 $aQuantum Field Theories, String Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19048 606 $aAcoustics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21069 606 $aAbstract Harmonic Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12015 615 0$aQuantum field theory. 615 0$aString theory. 615 0$aAcoustics. 615 0$aHarmonic analysis. 615 14$aQuantum Field Theories, String Theory. 615 24$aAcoustics. 615 24$aAbstract Harmonic Analysis. 676 $a530.14 700 $aDobrev$b V. K$4aut$4http://id.loc.gov/vocabulary/relators/aut$0468747 702 $aMack$b G$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aPetkova$b V. B$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aPetrova$b S. G$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aTodorov$b I. T$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a996466831403316 996 $aHarmonic Analysis$92532299 997 $aUNISA