LEADER 04206nam 22008415 450 001 996466806703316 005 20200630010528.0 010 $a3-540-31526-8 024 7 $a10.1007/b102320 035 $a(CKB)1000000000231793 035 $a(DE-He213)978-3-540-31526-1 035 $a(SSID)ssj0000319696 035 $a(PQKBManifestationID)11258253 035 $a(PQKBTitleCode)TC0000319696 035 $a(PQKBWorkID)10338304 035 $a(PQKB)10526969 035 $a(MiAaPQ)EBC4975558 035 $a(Au-PeEL)EBL4975558 035 $a(CaONFJC)MIL140174 035 $a(OCoLC)1024242781 035 $a(PPN)123089816 035 $a(EXLCZ)991000000000231793 100 $a20100806d2005 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aQuantum Field Theory and Noncommutative Geometry$b[electronic resource] /$fedited by Ursula Carow-Watamura, Yoshiaki Maeda, Satoshi Watamura 205 $a1st ed. 2005. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2005. 215 $a1 online resource (X, 298 p.) 225 1 $aLecture Notes in Physics,$x0075-8450 ;$v662 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-23900-6 327 $aNoncommutative Geometry -- Poisson Geometry and Deformation Quantization -- Applications in Physics -- Topological Quantum Field Theory. 330 $aThis volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field. 410 0$aLecture Notes in Physics,$x0075-8450 ;$v662 606 $aPhysics 606 $aTopological groups 606 $aLie groups 606 $aAlgebraic topology 606 $aDifferential geometry 606 $aElementary particles (Physics) 606 $aQuantum field theory 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 606 $aAlgebraic Topology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28019 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aElementary Particles, Quantum Field Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P23029 615 0$aPhysics. 615 0$aTopological groups. 615 0$aLie groups. 615 0$aAlgebraic topology. 615 0$aDifferential geometry. 615 0$aElementary particles (Physics). 615 0$aQuantum field theory. 615 14$aMathematical Methods in Physics. 615 24$aTopological Groups, Lie Groups. 615 24$aAlgebraic Topology. 615 24$aDifferential Geometry. 615 24$aElementary Particles, Quantum Field Theory. 676 $a530.15 702 $aCarow-Watamura$b Ursula$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aMaeda$b Yoshiaki$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aWatamura$b Satoshi$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466806703316 996 $aQuantum field theory and noncommutative geometry$9757827 997 $aUNISA