LEADER 03143nam 22004215 450 001 996466793903316 005 20200706185006.0 010 $a3-540-38650-5 024 7 $a10.1007/3-540-06725-6 035 $a(CKB)1000000000229694 035 $a(DE-He213)978-3-540-38650-6 035 $a(PPN)155232800 035 $a(EXLCZ)991000000000229694 100 $a20121227d1974 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFoundations of Quantum Mechanics and Ordered Linear Spaces$b[electronic resource] $eAdvanced Study Institute held in Marburg 1973 /$fedited by A. Hartkämper, H. Neumann 205 $a1st ed. 1974. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1974. 215 $a1 online resource (VI, 359 p. 1 illus.) 225 1 $aLecture Notes in Physics,$x0075-8450 ;$v29 311 $a3-540-06725-6 327 $aOrderings of vector spaces -- Duality of cones in locally convex spaces -- Order unit and base norm spaces -- Minimal decompositions in base normed spaces -- Simplex spaces -- Representation of Banach lattices -- Order ideals in ordered Banach spaces -- Order bounded operators and central measures -- Ordered normed tensor products -- Positive linear maps of Cu*-algebras -- Axiomatics of preparing and measuring procedures -- The structure of ordered Banach spaces in axiomatic quantum mechanics -- Measuring and preparing processes -- Models of the measuring process and of macro-theories -- The centre of a physical system -- Operations and effects in the Hilbert space formulation of quantum theory -- The empirical logic approach to the physical sciences -- The structure of quantum mechanics: Suggestions for a unified physics -- Irreversibility and dynamical maps of statistical operators -- The inner orthogonality of convex sets in axiomatic quantum mechanics -- Reduced dynamics in quantum mechanics -- The quantum mechanical Hilbert space formalism and the quantum mechanical probability space of the outcomes of measurements -- Mean ergodic semigroups and invariant ideals in ordered Banach spaces -- The representation of classical systems in quantum mechanics -- Extended Hilbert space formulation of Dirac's bra and ket formalism and its applications to abstract stationary scattering theory -- Projections on orthomodular lattices -- The ?ilov boundary of a convex cone -- A Radon-nikodym-theorem for operators with an application to spectral theory. 410 0$aLecture Notes in Physics,$x0075-8450 ;$v29 606 $aQuantum physics 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 615 0$aQuantum physics. 615 14$aQuantum Physics. 676 $a530.12 702 $aHartkämper$b A$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aNeumann$b H$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a996466793903316 996 $aFoundations of quantum mechanics and ordered linear spaces$9354614 997 $aUNISA