LEADER 04081nam 22007095 450 001 996466790903316 005 20200630042227.0 010 $a3-540-31528-4 024 7 $a10.1007/b11728 035 $a(CKB)1000000000231635 035 $a(DE-He213)978-3-540-31528-5 035 $a(SSID)ssj0000317247 035 $a(PQKBManifestationID)11258279 035 $a(PQKBTitleCode)TC0000317247 035 $a(PQKBWorkID)10289092 035 $a(PQKB)10232834 035 $a(MiAaPQ)EBC4975614 035 $a(Au-PeEL)EBL4975614 035 $a(CaONFJC)MIL178167 035 $a(OCoLC)1024261819 035 $a(PPN)12308850X 035 $a(EXLCZ)991000000000231635 100 $a20100806d2005 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDissipative Solitons$b[electronic resource] /$fedited by Nail Akhmediev, Adrian Ankiewicz 205 $a1st ed. 2005. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2005. 215 $a1 online resource (XVIII, 448 p. 220 illus. Also available online.) 225 1 $aLecture Notes in Physics,$x0075-8450 ;$v661 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-23373-3 327 $aIntroduction -- Dissipative Solitons of the Swift-Hohenberg Equation -- Dissipative Magneto-Optic Solitons -- Dissipative Solitons in Semiconductor Optical Amplifiers -- Dissipative Solitons in Pattern-Forming Nonlinear Optical Systems: Cavity Solitons and Feedback Solitons -- Solitons in Laser Schemes with Saturable Absorption -- Spatial Resonator Solitons -- Dissipative Temporal Solitons -- Soliton Dynamics in Modelocked Lasers -- Temporal Multi-Soliton Complexes Generated by Passively Modelocked Lasers -- Dissipative Solitons in Reaction-Diffusion Systems -- Discrete Ginzburg-Landau Solitons -- Discrete Dissipative Solitons -- Nonlinear Schroedinger Equation with Dissipation: Two Models for Bose-Einstein Condensates -- Solitary Waves of Nonlinear Equations -- Stability Analysis of Pulses via the Evans Function: Dissipative Systems -- Bifurcations and Strongly Amplitude-Modulated Pulses of the Complex Ginzburg-Landau Equation. 330 $aThis volume is devoted to the exciting topic of dissipative solitons, i.e. pulses or spatially localised waves in systems exhibiting gain and loss. Examples are laser systems, nonlinear resonators and optical transmission lines. The physical principles and mathematical concepts are explained in a clear and concise way, suitable for students and young researchers. The similarities and differences in the notion of a soliton between dissipative systems and Hamiltonian and integrable systems are discussed, and many examples are given. The contributions are written by the world's leading experts in the field, making it a unique exposition of this emerging topic. 410 0$aLecture Notes in Physics,$x0075-8450 ;$v661 606 $aLasers 606 $aPhotonics 606 $aQuantum optics 606 $aEngineering 606 $aOptics, Lasers, Photonics, Optical Devices$3https://scigraph.springernature.com/ontologies/product-market-codes/P31030 606 $aQuantum Optics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24050 606 $aEngineering, general$3https://scigraph.springernature.com/ontologies/product-market-codes/T00004 615 0$aLasers. 615 0$aPhotonics. 615 0$aQuantum optics. 615 0$aEngineering. 615 14$aOptics, Lasers, Photonics, Optical Devices. 615 24$aQuantum Optics. 615 24$aEngineering, general. 676 $a531/.1133 702 $aAkhmediev$b Nail$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aAnkiewicz$b Adrian$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466790903316 996 $aDissipative solitons$9736216 997 $aUNISA