LEADER 03033nam 2200589 450 001 996466772603316 005 20220911051643.0 010 $a3-540-46641-X 024 7 $a10.1007/BFb0094551 035 $a(CKB)1000000000437101 035 $a(SSID)ssj0000321455 035 $a(PQKBManifestationID)12064904 035 $a(PQKBTitleCode)TC0000321455 035 $a(PQKBWorkID)10281695 035 $a(PQKB)10103670 035 $a(DE-He213)978-3-540-46641-3 035 $a(MiAaPQ)EBC5596199 035 $a(Au-PeEL)EBL5596199 035 $a(OCoLC)1076235295 035 $a(MiAaPQ)EBC6842391 035 $a(Au-PeEL)EBL6842391 035 $a(OCoLC)793079281 035 $a(PPN)155203142 035 $a(EXLCZ)991000000000437101 100 $a20220911d1991 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAsymptotic behavior of monodromy $esingularly perturbed differential equations on a Riemann surface /$fCarlos Simpson 205 $a1st ed. 1991. 210 1$aBerlin, Heidelberg :$cSpringer Verlag,$d[1991] 210 4$dİ1991 215 $a1 online resource (VI, 142 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1502 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-55009-7 327 $aOrdinary differential equations on a Riemann surface -- Laplace transform, asymptotic expansions, and the method of stationary phase -- Construction of flows -- Moving relative homology chains -- The main lemma -- Finiteness lemmas -- Sizes of cells -- Moving the cycle of integration -- Bounds on multiplicities -- Regularity of individual terms -- Complements and examples -- The Sturm-Liouville problem. 330 $aThis book concerns the question of how the solution of a system of ODE's varies when the differential equation varies. The goal is to give nonzero asymptotic expansions for the solution in terms of a parameter expressing how some coefficients go to infinity. A particular classof families of equations is considered, where the answer exhibits a new kind of behavior not seen in most work known until now. The techniques include Laplace transform and the method of stationary phase, and a combinatorial technique for estimating the contributions of terms in an infinite series expansion for the solution. Addressed primarily to researchers inalgebraic geometry, ordinary differential equations and complex analysis, the book will also be of interest to applied mathematicians working on asymptotics of singular perturbations and numerical solution of ODE's. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1502 606 $aDifferential equations 615 0$aDifferential equations. 676 $a515.35 700 $aSimpson$b Carlos$f1962-$059536 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466772603316 996 $aAsymptotic behavior of monodromy$978661 997 $aUNISA