LEADER 03835nam 22007455 450 001 996466771803316 005 20200701013808.0 010 $a3-540-39810-4 024 7 $a10.1007/b13466 035 $a(CKB)1000000000230821 035 $a(SSID)ssj0000325044 035 $a(PQKBManifestationID)12114715 035 $a(PQKBTitleCode)TC0000325044 035 $a(PQKBWorkID)10322252 035 $a(PQKB)10344011 035 $a(DE-He213)978-3-540-39810-3 035 $a(MiAaPQ)EBC6298194 035 $a(MiAaPQ)EBC5578333 035 $a(Au-PeEL)EBL5578333 035 $a(OCoLC)864231075 035 $a(PPN)238037770 035 $a(EXLCZ)991000000000230821 100 $a20121227d2003 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMultiscale Problems and Methods in Numerical Simulations$b[electronic resource] $eLectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 9-15, 2001 /$fby James H. Bramble, Albert Cohen, Wolfgang Dahmen ; edited by Claudio Canuto 205 $a1st ed. 2003. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2003. 215 $a1 online resource (XIV, 170 p.) 225 1 $aC.I.M.E. Foundation Subseries ;$v1825 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-20099-1 320 $aIncludes bibliographical references (pages 150-151). 327 $aPreface -- A. Cohen: Theoretical Applied and Computational Aspects of Nonlinear Approximation -- W. Dahmen: Multiscale and Wavelet Methods for Operator Equations -- J. H. Bramble: Multilevel Methods in Finite Elements. 330 $aThis volume aims to disseminate a number of new ideas that have emerged in the last few years in the field of numerical simulation, all bearing the common denominator of the "multiscale" or "multilevel" paradigm. This covers the presence of multiple relevant "scales" in a physical phenomenon; the detection and representation of "structures", localized in space or in frequency, in the solution of a mathematical model; the decomposition of a function into "details" that can be organized and accessed in decreasing order of importance; and the iterative solution of systems of linear algebraic equations using "multilevel" decompositions of finite dimensional spaces. 410 0$aC.I.M.E. Foundation Subseries ;$v1825 606 $aFourier analysis 606 $aApproximation theory 606 $aNumerical analysis 606 $aFourier Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12058 606 $aApproximations and Expansions$3https://scigraph.springernature.com/ontologies/product-market-codes/M12023 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 615 0$aFourier analysis. 615 0$aApproximation theory. 615 0$aNumerical analysis. 615 14$aFourier Analysis. 615 24$aApproximations and Expansions. 615 24$aNumerical Analysis. 676 $a530.13 700 $aBramble$b James H$4aut$4http://id.loc.gov/vocabulary/relators/aut$060323 702 $aCohen$b Albert$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aDahmen$b Wolfgang$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aCanuto$b Claudio$4edt$4http://id.loc.gov/vocabulary/relators/edt 712 02$aCentro internazionale matematico estivo. 712 12$aC.I.M.E. Course on "Multiscale Problems and Methods in Numerical Simulation" 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466771803316 996 $aMultiscale Problems and Methods in Numerical Simulations$92543725 997 $aUNISA