LEADER 04413nam 22007695 450 001 996466765803316 005 20200630025259.0 010 $a3-319-45955-4 024 7 $a10.1007/978-3-319-45955-4 035 $a(CKB)3710000000981085 035 $a(DE-He213)978-3-319-45955-4 035 $a(MiAaPQ)EBC6284008 035 $a(MiAaPQ)EBC5592217 035 $a(Au-PeEL)EBL5592217 035 $a(OCoLC)964656014 035 $a(PPN)197133150 035 $a(EXLCZ)993710000000981085 100 $a20161114d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aQuadratic Residues and Non-Residues$b[electronic resource] $eSelected Topics /$fby Steve Wright 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XIII, 292 p. 20 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2171 311 $a3-319-45954-6 327 $aChapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime -- Chapter 2. Basic Facts -- Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity -- Chapter 4. Four Interesting Applications of Quadratic Reciprocity -- Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications -- Chapter 6. Elementary Proofs -- Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues -- Chapter 8. Dirichlet's Class-Number Formula -- Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression -- Chapter 10. Are quadratic residues randomly distributed? -- Bibliography. 330 $aThis book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet?s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2171 606 $aNumber theory 606 $aCommutative algebra 606 $aCommutative rings 606 $aAlgebra 606 $aField theory (Physics) 606 $aConvex geometry  606 $aDiscrete geometry 606 $aFourier analysis 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 606 $aCommutative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11043 606 $aField Theory and Polynomials$3https://scigraph.springernature.com/ontologies/product-market-codes/M11051 606 $aConvex and Discrete Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21014 606 $aFourier Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12058 615 0$aNumber theory. 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aAlgebra. 615 0$aField theory (Physics). 615 0$aConvex geometry . 615 0$aDiscrete geometry. 615 0$aFourier analysis. 615 14$aNumber Theory. 615 24$aCommutative Rings and Algebras. 615 24$aField Theory and Polynomials. 615 24$aConvex and Discrete Geometry. 615 24$aFourier Analysis. 676 $a510 700 $aWright$b Steve$4aut$4http://id.loc.gov/vocabulary/relators/aut$0441712 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466765803316 996 $aQuadratic residues and non-residues$91412561 997 $aUNISA