LEADER 01248cam1 2200277 450 001 E600200033605 005 20100406085645.0 100 $a20080125f0000 |||||ita|0103 ba 101 $alat 102 $aIT 200 1 $aMonumenta ad Neapolitani Ducatus historiam pertinentia$equae partim nunc primum, partim iterum typis vulgantur$fcura et studio Bartholomaei Capasso cum eiusdem notis ac dissertationibus 210 $aNeapoli$cEx regio typographeo Francesci Giannini 215 $av.$cill.$d34 cm 225 2 $aSocietà Napoletana di Storia Patria$eMonumenti storici 300 $a(bb) 410 1$1001LAEC00024464$12001 $a*Società Napoletana di Storia Patria : Monumenti storici 463 1$1001E600200062652$12000 $a1 : [Chronicon Ducum et Principum Beneventi, Salerni et Capuae et Ducum Neapolis] 463 1$1001E600200062654$12000 $a2, 1 : [IV : Regesta Neapolitana ab anno 912 ad annum 1139] 463 1$1001E600200062655$12000 $a2, 2 [Documenti] 700 1$aCapasso$b, Bartolomeo$3A600200027052$4070$036189 801 0$aIT$bUNISOB$c20100406$gRICA 912 $aE600200033605 940 $aM 102 Monografia moderna SBN 941 $aM 996 $aMonumenta ad Neapolitani Ducatus historiam pertinentia$9769609 997 $aUNISOB LEADER 04451nam 22006375 450 001 996466761103316 005 20200629171318.0 010 $a3-319-26638-1 024 7 $a10.1007/978-3-319-26638-1 035 $a(CKB)3710000000627459 035 $a(SSID)ssj0001659720 035 $a(PQKBManifestationID)16441274 035 $a(PQKBTitleCode)TC0001659720 035 $a(PQKBWorkID)14989391 035 $a(PQKB)11512132 035 $a(DE-He213)978-3-319-26638-1 035 $a(MiAaPQ)EBC6295813 035 $a(MiAaPQ)EBC5592679 035 $a(Au-PeEL)EBL5592679 035 $a(OCoLC)944120420 035 $a(PPN)192282573 035 $a(EXLCZ)993710000000627459 100 $a20160302d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aNéron Models and Base Change$b[electronic resource] /$fby Lars Halvard Halle, Johannes Nicaise 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (X, 151 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2156 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-26637-3 327 $aNormal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Introduction -- Preliminaries -- Models of curves and the Neron component series of a Jacobian -- Component groups and non-archimedean uniformization -- The base change conductor and Edixhoven's ltration -- The base change conductor and the Artin conductor -- Motivic zeta functions of semi-abelian varieties -- Cohomological interpretation of the motivic zeta function. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}. 330 $aPresenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically on Néron component groups, Edixhoven?s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions of abelian varieties. The final chapter contains a list of challenging open questions. This book is aimed towards researchers with a background in algebraic and arithmetic geometry. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2156 606 $aAlgebraic geometry 606 $aNumber theory 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 615 0$aAlgebraic geometry. 615 0$aNumber theory. 615 14$aAlgebraic Geometry. 615 24$aNumber Theory. 676 $a516.35 700 $aHalle$b Lars Halvard$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721076 702 $aNicaise$b Johannes$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466761103316 996 $aNéron Models and Base Change$92169021 997 $aUNISA