LEADER 02208nam 2200613 450 001 996466759903316 005 20220411201508.0 010 $a3-540-46434-4 024 7 $a10.1007/BFb0093829 035 $a(CKB)1000000000437086 035 $a(SSID)ssj0000326663 035 $a(PQKBManifestationID)12097391 035 $a(PQKBTitleCode)TC0000326663 035 $a(PQKBWorkID)10296737 035 $a(PQKB)10550181 035 $a(DE-He213)978-3-540-46434-1 035 $a(MiAaPQ)EBC5594424 035 $a(Au-PeEL)EBL5594424 035 $a(OCoLC)1076235368 035 $a(MiAaPQ)EBC6842666 035 $a(Au-PeEL)EBL6842666 035 $a(OCoLC)1169951461 035 $a(PPN)155169718 035 $a(EXLCZ)991000000000437086 100 $a20220304d1991 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSingular modular forms and theta relations /$fEberhard Freitag 205 $a1st ed. 1991. 210 1$aBerlin :$cSpringer,$d[1991] 210 4$dİ1991 215 $a1 online resource (VI, 174 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1487 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-54704-5 327 $aSiegel modular forms -- Theta series with polynomial coefficients -- Singular weights -- Singular modular forms and theta series -- The fundamental lemma -- The results. 330 $aThis research monograph reports on recent work on the theory of singular Siegel modular forms of arbitrary level. Singular modular forms are represented as linear combinations of theta series. The reader is assumed toknow only the basic theory of Siegel modular forms. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1487 606 $aNumber theory$xData processing 615 0$aNumber theory$xData processing. 676 $a512.7 686 $a11F27$2msc 686 $a11F03$2msc 700 $aFreitag$b Eberhard$054237 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466759903316 996 $aSingular modular forms and theta relations$978640 997 $aUNISA