LEADER 03238nam 2200625 450 001 996466759203316 005 20220305043210.0 010 $a3-540-38400-6 024 7 $a10.1007/BFb0095750 035 $a(CKB)1000000000437081 035 $a(SSID)ssj0000322651 035 $a(PQKBManifestationID)12099109 035 $a(PQKBTitleCode)TC0000322651 035 $a(PQKBWorkID)10289053 035 $a(PQKB)10448749 035 $a(DE-He213)978-3-540-38400-7 035 $a(MiAaPQ)EBC5577525 035 $a(Au-PeEL)EBL5577525 035 $a(OCoLC)1066193715 035 $a(MiAaPQ)EBC6842502 035 $a(Au-PeEL)EBL6842502 035 $a(OCoLC)1292359513 035 $a(PPN)155169394 035 $a(EXLCZ)991000000000437081 100 $a20220305d1991 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 14$aThe Dirichlet problem with Lp-boundary data for elliptic linear equations /$fJan Chabrowski 205 $a1st ed. 1991. 210 1$aBerlin, Heidelberg :$cSpringer-Verlag,$d[1991] 210 4$dİ1991 215 $a1 online resource (VI, 173 p.) 225 1 $aLecture Notes in Mathematics ;$v1482 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-54486-0 311 $a3-540-54486-0 327 $aWeighted Sobolev space -- The Dirichlet problem in a half-space -- The Dirichlet problem in a bounded domain -- Estimates of derivatives -- Harmonic measure -- Exceptional sets on the boundary -- Applications of the L 2-method -- Domains with C1,?-boundary -- The space C n?1( ) -- C n?1-estimate of the solution of the Dirichlet problem with L 2-boundary data. 330 $aThe Dirichlet problem has a very long history in mathematics and its importance in partial differential equations, harmonic analysis, potential theory and the applied sciences is well-known. In the last decade the Dirichlet problem with L2-boundary data has attracted the attention of several mathematicians. The significant features of this recent research are the use of weighted Sobolev spaces, existence results for elliptic equations under very weak regularity assumptions on coefficients, energy estimates involving L2-norm of a boundary data and the construction of a space larger than the usual Sobolev space W1,2 such that every L2-function on the boundary of a given set is the trace of a suitable element of this space. The book gives a concise account of main aspects of these recent developments and is intended for researchers and graduate students. Some basic knowledge of Sobolev spaces and measure theory is required. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1482. 606 $aDirichlet problem 606 $aDifferential equations, Elliptic$xNumerical solutions 615 0$aDirichlet problem. 615 0$aDifferential equations, Elliptic$xNumerical solutions. 676 $a517 700 $aChabrowski$b Jan$f1941-$059970 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466759203316 996 $aThe Dirichlet problem with Lp-boundary data for elliptic linear equations$92831033 997 $aUNISA