LEADER 04044nam 22006855 450 001 996466720103316 005 20200706014709.0 010 $a1-280-38481-6 010 $a9786613562739 010 $a3-540-89793-3 024 7 $a10.1007/978-3-540-89793-4 035 $a(CKB)1000000000773180 035 $a(SSID)ssj0000319196 035 $a(PQKBManifestationID)11243816 035 $a(PQKBTitleCode)TC0000319196 035 $a(PQKBWorkID)10337574 035 $a(PQKB)11720577 035 $a(DE-He213)978-3-540-89793-4 035 $a(MiAaPQ)EBC3064379 035 $a(PPN)136309763 035 $a(EXLCZ)991000000000773180 100 $a20100301d2009 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aNoncommutative Spacetimes$b[electronic resource] $eSymmetries in Noncommutative Geometry and Field Theory /$fby Paolo Aschieri, Marija Dimitrijevic, Petr Kulish, Fedele Lizzi, Julius Wess 205 $a1st ed. 2009. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2009. 215 $a1 online resource (XIV, 199 p. 10 illus.) 225 1 $aLecture Notes in Physics,$x0075-8450 ;$v774 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-89792-5 320 $aIncludes bibliographical references and index. 327 $aDeformed Field Theory: Physical Aspects -- Differential Calculus and Gauge Transformations on a Deformed Space -- Deformed Gauge Theories -- Einstein Gravity on Deformed Spaces -- Deformed Gauge Theory: Twist Versus Seiberg#x2013;Witten Approach -- Another Example of Noncommutative Spaces: #x03BA;-Deformed Space -- Noncommutative Geometries: Foundations and Applications -- Noncommutative Spaces -- Quantum Groups, Quantum Lie Algebras, and Twists -- Noncommutative Symmetries and Gravity -- Twist Deformations of Quantum Integrable Spin Chains -- The Noncommutative Geometry of Julius Wess. 330 $aThere are many approaches to noncommutative geometry and to its use in physics. This volume addresses the subject by combining the deformation quantization approach, based on the notion of star-product, and the deformed quantum symmetries methods, based on the theory of quantum groups. The aim of this work is to give an introduction to this topic and to prepare the reader to enter the research field quickly. The order of the chapters is "physics first": the mathematics follows from the physical motivations (e.g. gauge field theories) in order to strengthen the physical intuition. The new mathematical tools, in turn, are used to explore further physical insights. A last chapter has been added to briefly trace Julius Wess' (1934-2007) seminal work in the field. 410 0$aLecture Notes in Physics,$x0075-8450 ;$v774 606 $aPhysics 606 $aGroup theory 606 $aQuantum physics 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 615 0$aPhysics. 615 0$aGroup theory. 615 0$aQuantum physics. 615 14$aMathematical Methods in Physics. 615 24$aGroup Theory and Generalizations. 615 24$aQuantum Physics. 676 $a530.15636 700 $aAschieri$b Paolo$4aut$4http://id.loc.gov/vocabulary/relators/aut$01064504 702 $aDimitrijevic$b Marija$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aKulish$b Petr$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aLizzi$b Fedele$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aWess$b Julius$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a996466720103316 996 $aNoncommutative Spacetimes$92538645 997 $aUNISA