LEADER 02686nam 22005175 450 001 996466715203316 005 20200704034350.0 010 $a3-642-14700-3 024 7 $a10.1007/978-3-642-14700-5 035 $a(CKB)2670000000065053 035 $a(SSID)ssj0000506059 035 $a(PQKBManifestationID)11341137 035 $a(PQKBTitleCode)TC0000506059 035 $a(PQKBWorkID)10514219 035 $a(PQKB)11684950 035 $a(DE-He213)978-3-642-14700-5 035 $a(MiAaPQ)EBC3066355 035 $a(PPN)149908741 035 $a(EXLCZ)992670000000065053 100 $a20110126d2011 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aTopology and Geometry for Physics$b[electronic resource] /$fby Helmut Eschrig 205 $a1st ed. 2011. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2011. 215 $a1 online resource (XII, 390 p. 60 illus.) 225 1 $aLecture Notes in Physics,$x0075-8450 ;$v822 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-14699-6 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Topology -- Manifolds -- Tensor Fields -- Integration, Homology and Cohomology -- Lie Groups -- Bundles and Connections -- Parallelism, Holonomy, Homotopy and (Co)homology -- Riemannian Geometry -- Compendium. 330 $aA concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smooth finite-dimensional manifolds, tensor and exterior calculus operating on them, homotopy, (co)homology theory including Morse theory of critical points, as well as the theory of fiber bundles and Riemannian geometry, are treated. Examples from physics comprise topological charges, the topology of periodic boundary conditions for solids, gauge fields, geometric phases in quantum physics and gravitation. 410 0$aLecture Notes in Physics,$x0075-8450 ;$v822 606 $aPhysics 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 615 0$aPhysics. 615 14$aMathematical Methods in Physics. 676 $a530.15/4 700 $aEschrig$b Helmut$4aut$4http://id.loc.gov/vocabulary/relators/aut$0515334 906 $aBOOK 912 $a996466715203316 996 $aTopology and Geometry for Physics$9855619 997 $aUNISA