LEADER 03936nam 22007095 450 001 996466683303316 005 20200629120245.0 010 $a3-540-89526-4 024 7 $a10.1007/978-3-540-89526-8 035 $a(CKB)1000000000746623 035 $a(SSID)ssj0000320491 035 $a(PQKBManifestationID)11262156 035 $a(PQKBTitleCode)TC0000320491 035 $a(PQKBWorkID)10249238 035 $a(PQKB)11337870 035 $a(DE-He213)978-3-540-89526-8 035 $a(MiAaPQ)EBC3064123 035 $a(PPN)134130545 035 $a(EXLCZ)991000000000746623 100 $a20100301d2009 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aTransport Equations for Semiconductors$b[electronic resource] /$fby Ansgar Jüngel 205 $a1st ed. 2009. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2009. 215 $a1 online resource (XVII, 315 p. 27 illus.) 225 1 $aLecture Notes in Physics,$x0075-8450 ;$v773 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-89525-6 320 $aIncludes bibliographical references and index. 327 $aBasic Semiconductor Physics -- Microscopic Semi-Classical Models -- Derivation of Macroscopic Equations -- Collisionless Models -- Scattering Models -- Macroscopic Semi-Classical Models -- Drift-Diffusion Equations -- Energy-Transport Equations -- Spherical Harmonics Expansion Equations -- Diffusive Higher-Order Moment Equations -- Hydrodynamic Equations -- Microscopic Quantum Models -- The Schr#x00F6;dinger Equation -- The Wigner Equation -- Macroscopic Quantum Models -- Quantum Drift-Diffusion Equations -- Quantum Diffusive Higher-Order Moment Equations -- Quantum Hydrodynamic Equations. 330 $aSemiconductor devices are ubiquitous in the modern computer and telecommunications industry. A precise knowledge of the transport equations for electron flow in semiconductors when a voltage is applied is therefore of paramount importance for further technological breakthroughs. In the present work, the author tackles their derivation in a systematic and rigorous way, depending on certain key parameters such as the number of free electrons in the device, the mean free path of the carriers, the device dimensions and the ambient temperature. Accordingly a hierarchy of models is examined which is reflected in the structure of the book: first the microscopic and macroscopic semi-classical approaches followed by their quantum-mechanical counterparts. 410 0$aLecture Notes in Physics,$x0075-8450 ;$v773 606 $aSolid state physics 606 $aSpectroscopy 606 $aMicroscopy 606 $aOptical materials 606 $aElectronic materials 606 $aPhysics 606 $aSolid State Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25013 606 $aSpectroscopy and Microscopy$3https://scigraph.springernature.com/ontologies/product-market-codes/P31090 606 $aOptical and Electronic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 615 0$aSolid state physics. 615 0$aSpectroscopy. 615 0$aMicroscopy. 615 0$aOptical materials. 615 0$aElectronic materials. 615 0$aPhysics. 615 14$aSolid State Physics. 615 24$aSpectroscopy and Microscopy. 615 24$aOptical and Electronic Materials. 615 24$aMathematical Methods in Physics. 676 $a537.622 700 $aJüngel$b Ansgar$4aut$4http://id.loc.gov/vocabulary/relators/aut$065694 906 $aBOOK 912 $a996466683303316 996 $aTransport Equations for Semiconductors$9774071 997 $aUNISA