LEADER 03002nam 22006015 450 001 996466670603316 005 20200702171535.0 010 $a3-540-40015-X 024 7 $a10.1007/b75857 035 $a(CKB)1000000000233175 035 $a(SSID)ssj0000323645 035 $a(PQKBManifestationID)12064872 035 $a(PQKBTitleCode)TC0000323645 035 $a(PQKBWorkID)10300706 035 $a(PQKB)11472141 035 $a(DE-He213)978-3-540-40015-8 035 $a(MiAaPQ)EBC3073230 035 $a(PPN)155189670 035 $a(EXLCZ)991000000000233175 100 $a20121227d2000 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aGrothendieck Duality and Base Change$b[electronic resource] /$fby Brian Conrad 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (XII, 300 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1750 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-41134-8 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Basic compatibilities -- Duality foundations -- Proof of main theorom -- Examples: Higher direct images. Curves -- Residues and cohomology with supports -- Trace map on smooth curves. 330 $aGrothendieck's duality theory for coherent cohomology is a fundamental tool in algebraic geometry and number theory, in areas ranging from the moduli of curves to the arithmetic theory of modular forms. Presented is a systematic overview of the entire theory, including many basic definitions and a detailed study of duality on curves, dualizing sheaves, and Grothendieck's residue symbol. Along the way proofs are given of some widely used foundational results which are not proven in existing treatments of the subject, such as the general base change compatibility of the trace map for proper Cohen-Macaulay morphisms (e.g., semistable curves). This should be of interest to mathematicians who have some familiarity with Grothendieck's work and wish to understand the details of this theory. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1750 606 $aAlgebraic geometry 606 $aNumber theory 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 615 0$aAlgebraic geometry. 615 0$aNumber theory. 615 14$aAlgebraic Geometry. 615 24$aNumber Theory. 676 $a515/.782 700 $aConrad$b Brian$4aut$4http://id.loc.gov/vocabulary/relators/aut$065658 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466670603316 996 $aGrothendieck duality and base change$9378457 997 $aUNISA