LEADER 03375nam 2200625 450 001 996466669303316 005 20220908072903.0 010 $a3-540-49401-4 024 7 $a10.1007/BFb0096835 035 $a(CKB)1000000000437204 035 $a(SSID)ssj0000327020 035 $a(PQKBManifestationID)12097405 035 $a(PQKBTitleCode)TC0000327020 035 $a(PQKBWorkID)10297767 035 $a(PQKB)11222145 035 $a(DE-He213)978-3-540-49401-0 035 $a(MiAaPQ)EBC5579127 035 $a(Au-PeEL)EBL5579127 035 $a(OCoLC)1066196643 035 $a(MiAaPQ)EBC6842123 035 $a(Au-PeEL)EBL6842123 035 $a(PPN)155191764 035 $a(EXLCZ)991000000000437204 100 $a20220908d1995 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSuperconvergence in Galerkin finite element methods /$fLars B. Wahlbin 205 $a1st ed. 1995. 210 1$aBerlin :$cSpringer,$d[1995] 210 4$dİ1995 215 $a1 online resource (XII, 172 p.) 225 1 $aLecture notes in mathematics (Springer-Verlag) ;$v1605 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-60011-6 327 $aSome one-dimensional superconvergence results -- Remarks about some of the tools used in Chapter 1 -- Local and global properties of L 2-projections -- to several space dimensions: some results about superconvergence in L 2-projections -- Second order elliptic boundary value problems in any number of space dimensions: preliminary considerations on local and global estimates and presentation of the main technical tools for showing superconvergence -- Superconvergence in tensor-product elements -- Superconvergence by local symmetry -- Superconvergence for difference quotients on translation invariant meshes -- On superconvergence in nonlinear problems -- 10. Superconvergence in isoparametric mappings of translation invariant meshes: an example -- Superconvergence by averaging: mainly, the K-operator -- A computational investigation of superconvergence for first derivatives in the plane. 330 $aThis book is essentially a set of lecture notes from a graduate seminar given at Cornell in Spring 1994. It treats basic mathematical theory for superconvergence in the context of second order elliptic problems. It is aimed at graduate students and researchers. The necessary technical tools are developed in the text although sometimes long proofs are merely referenced. The book gives a rather complete overview of the field of superconvergence (in time-independent problems). It is the first text with such a scope. It includes a very complete and up-to-date list of references. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1605. 606 $aConvergence 606 $aDifferential equations, Elliptic$xNumerical solutions 606 $aGalerkin methods 615 0$aConvergence. 615 0$aDifferential equations, Elliptic$xNumerical solutions. 615 0$aGalerkin methods. 676 $a515.24 700 $aWahlbin$b Lars B.$f1945-2013,$056581 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466669303316 996 $aSuperconvergence in Galerkin finite element methods$978100 997 $aUNISA