LEADER 02417nam 2200577 450 001 996466669003316 005 20220911122722.0 010 $a3-540-49185-6 024 7 $a10.1007/BFb0095837 035 $a(CKB)1000000000437201 035 $a(SSID)ssj0000321850 035 $a(PQKBManifestationID)12069523 035 $a(PQKBTitleCode)TC0000321850 035 $a(PQKBWorkID)10279898 035 $a(PQKB)10848959 035 $a(DE-He213)978-3-540-49185-9 035 $a(MiAaPQ)EBC5579864 035 $a(Au-PeEL)EBL5579864 035 $a(OCoLC)1066185130 035 $a(MiAaPQ)EBC6842920 035 $a(Au-PeEL)EBL6842920 035 $a(PPN)155191861 035 $a(EXLCZ)991000000000437201 100 $a20220911d1995 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 14$aThe classification of three-dimensional homogeneous complex manifolds /$fJo?rg Winkelmann 205 $a1st ed. 1995. 210 1$aBerlin, Germany :$cSpringer,$d[1995] 210 4$dİ1995 215 $a1 online resource (XII, 236 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1602 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-59072-2 327 $aSurvey -- The classification of three-dimensional homogeneous complex manifolds X=G/H where G is a complex lie group -- The classification of three-dimensional homogeneous complex manifolds X=G/H where G is a real lie group. 330 $aThis book provides a classification of all three-dimensional complex manifolds for which there exists a transitive action (by biholomorphic transformations) of a real Lie group. This means two homogeneous complex manifolds are considered equivalent if they are isomorphic as complex manifolds. The classification is based on methods from Lie group theory, complex analysis and algebraic geometry. Basic knowledge in these areas is presupposed. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1602 606 $aHomogeneous complex manifolds 615 0$aHomogeneous complex manifolds. 676 $a510 700 $aWinkelmann$b Jo?rg$f1963-$0350864 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466669003316 996 $aClassification of three-dimensional homogeneous complex manifolds$978111 997 $aUNISA