LEADER 01066nam0-2200337---450- 001 990008351890403321 005 20060626125139.0 010 $a3927894141 035 $a000835189 035 $aFED01000835189 035 $a(Aleph)000835189FED01 035 $a000835189 100 $a20060626d1993----km-y0itay50------ba 101 0 $ager 102 $aDE 105 $ay---n---001yy 200 1 $aKlassisches altertum, spatantike und fruhes christentum$eAdolf Lippold zum 65. geburtstag gewidmet$fherausgegeben von Karlheinz Dietz, Dieter Hennig und Hans Kaletsch 210 $aWurzburg$c]S. l.[$d1993 215 $aXVIII, 635 p.$d21 cm$e1 c. geogr 676 $a340.5$v11 rid.$zita 702 1$aDietz,$bKarlheinz 702 1$aLippold,$bAdolf$f<1926- > 702 1$aHennig,$bDieter 702 1$aKaletsch,$bHans 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008351890403321 952 $aDDR-Onor. Lippold$b2908$fDDR 959 $aDDR 996 $aKlassisches altertum, spatantike und fruhes christentum$9721878 997 $aUNINA LEADER 02583nam 2200613 450 001 996466664203316 005 20220908220058.0 010 $a3-540-38534-7 024 7 $a10.1007/BFb0089606 035 $a(CKB)1000000000437962 035 $a(SSID)ssj0000325223 035 $a(PQKBManifestationID)12124438 035 $a(PQKBTitleCode)TC0000325223 035 $a(PQKBWorkID)10320570 035 $a(PQKB)11730611 035 $a(DE-He213)978-3-540-38534-9 035 $a(MiAaPQ)EBC5592292 035 $a(Au-PeEL)EBL5592292 035 $a(OCoLC)1066197161 035 $a(MiAaPQ)EBC6841990 035 $a(Au-PeEL)EBL6841990 035 $a(PPN)155177354 035 $a(EXLCZ)991000000000437962 100 $a20220908d1981 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aNonlinear evolution equations $eglobal behavior of solutions /$fAlain Haraux 205 $a1st ed. 1981. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1981] 210 4$d©1981 215 $a1 online resource (CCCXXXII, 316 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v841 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-10563-8 327 $aGeneralities and local theory -- The global existence problem -- Theory of monotone operators and applications -- Smoothing effect for some nonlinear evolution equations -- Schrödinger and wave equations with a logarithmic nonlinearity -- The linear case: Hilbertian theory and applications -- Some nonlinear monotone cases -- Some nonlinear, non monotone cases -- Autonomous dissipative systems -- General results for quasi-autonomous periodic systems -- More on asymptotic behavior for solutions of the nonlinear dissipative forced wave equation -- Boundedness of trajectories for quasi-autonomous dissipative systems -- Almost-periodic quasi-autonomous dissipative systems in a Hilbert space. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v841 606 $aEvolution equations, Nonlinear$xNumerical solutions 606 $aMathematical physics 615 0$aEvolution equations, Nonlinear$xNumerical solutions. 615 0$aMathematical physics. 676 $a515.355 686 $a35K55$2msc 686 $a34G20$2msc 700 $aHaraux$b Alain$f1949-$042671 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466664203316 996 $aNonlinear evolution equations$92910277 997 $aUNISA