LEADER 00812nam0 2200289 450 001 9910417959403321 005 20200922091623.0 010 $a9788813373474 100 $a20200922d2020---- km y0itay50 ba 101 0 $aita 102 $aIT 105 $ay 001yy 200 1 $aDiritto dell'ambiente$fNicola Lugaresi$gcon la collaborazione di Eugenio Calicetti e Enrica Rocca 205 $a6. ed. 210 $aMilano$cWolters Kluwer Italia$d2020 215 $a269 p.$d22 cm 676 $a342 700 1$aLugaresi,$bNicola$0145352 702 1$aCalicetti$bEugenio 702 1$aRocca$bEnrica 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910417959403321 952 $aGRDDAMM89A$b2863$fDECBC 959 $aDECBC 996 $aDiritto dell'ambiente$9281133 997 $aUNINA LEADER 03614nam 22006135 450 001 996466662203316 005 20200709205055.0 010 $a3-540-46587-1 024 7 $a10.1007/BFb0112488 035 $a(CKB)1000000000437289 035 $a(SSID)ssj0000326507 035 $a(PQKBManifestationID)12069592 035 $a(PQKBTitleCode)TC0000326507 035 $a(PQKBWorkID)10296352 035 $a(PQKB)10556723 035 $a(DE-He213)978-3-540-46587-4 035 $a(MiAaPQ)EBC5596212 035 $a(PPN)155183826 035 $a(EXLCZ)991000000000437289 100 $a20100730d2000 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSemiclassical Analysis for Diffusions and Stochastic Processes$b[electronic resource] /$fby Vassili N. Kolokoltsov 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (VIII, 356 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1724 300 $aIncludes index. 311 $a3-540-66972-8 327 $aGaussian diffusions -- Boundary value problem for Hamiltonian systems -- Semiclassical approximation for regular diffusion -- Invariant degenerate diffusion on cotangent bundles -- Transition probability densities for stable jump-diffusions -- Semiclassical asymptotics for the localised Feller-Courrège processes -- Complex stochastic diffusion or stochastic Schrödinger equation -- Some topics in semiclassical spectral analysis -- Path integration for the Schrödinger, heat and complex diffusion equations. 330 $aThe monograph is devoted mainly to the analytical study of the differential, pseudo-differential and stochastic evolution equations describing the transition probabilities of various Markov processes. These include (i) diffusions (in particular,degenerate diffusions), (ii) more general jump-diffusions, especially stable jump-diffusions driven by stable Lévy processes, (iii) complex stochastic Schrödinger equations which correspond to models of quantum open systems. The main results of the book concern the existence, two-sided estimates, path integral representation, and small time and semiclassical asymptotics for the Green functions (or fundamental solutions) of these equations, which represent the transition probability densities of the corresponding random process. The boundary value problem for Hamiltonian systems and some spectral asymptotics ar also discussed. Readers should have an elementary knowledge of probability, complex and functional analysis, and calculus. . 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1724 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aProbabilities 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aProbabilities. 615 14$aAnalysis. 615 24$aProbability Theory and Stochastic Processes. 676 $a519.23 700 $aKolokoltsov$b Vassili N$4aut$4http://id.loc.gov/vocabulary/relators/aut$0441084 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466662203316 996 $aSemiclassical analysis for diffusions and stochastic processes$978817 997 $aUNISA