LEADER 00977cam0-2200337---450- 001 990004638330403321 005 20081119151750.0 010 $a0-7923-3745-X 035 $a000463833 035 $aFED01000463833 035 $a(Aleph)000463833FED01 035 $a000463833 100 $a19990604d1996----km-y0itay50------ba 101 0 $aeng 102 $aNL 105 $aa-------001yy 200 1 $aPhrase structure and the lexicon$fedited by Johan Rooryck and Laurie Zaring 210 $aDordrecht ; Boston ; London$cKluwer Academic$d1996 215 $a298 p.$cill.$d25 cm 225 1 $aStudies in natural language and linguistic theory$v33 610 0 $aLessicologia 676 $a415 702 1$aRooryck,$bJohan 702 1$aZarig,$bLaurie 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004638330403321 952 $a415 ROO 1$bBibl.19034$fFLFBC 959 $aFLFBC 996 $aPhrase structure and the lexicon$9551932 997 $aUNINA LEADER 03719nam 2200673 450 001 996466662003316 005 20220306005047.0 010 $a3-540-48040-4 024 7 $a10.1007/BFb0073471 035 $a(CKB)1000000000437158 035 $a(SSID)ssj0000326672 035 $a(PQKBManifestationID)12061286 035 $a(PQKBTitleCode)TC0000326672 035 $a(PQKBWorkID)10296694 035 $a(PQKB)10238315 035 $a(DE-He213)978-3-540-48040-2 035 $a(MiAaPQ)EBC5592500 035 $a(Au-PeEL)EBL5592500 035 $a(OCoLC)1066176978 035 $a(MiAaPQ)EBC6842866 035 $a(Au-PeEL)EBL6842866 035 $a(OCoLC)1058158383 035 $a(PPN)155169785 035 $a(EXLCZ)991000000000437158 100 $a20220306d1993 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSingularity theory and equivariant symplectic maps /$fThomas J. Bridges, Jacques E. Furter 205 $a1st ed. 1993. 210 1$aBerlin :$cSpringer,$d1993. 215 $a1 online resource (VI, 230 p.) 225 1 $aLecture notes in mathematics ;$v1558 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-57296-1 320 $aIncludes bibliographical references and index. 327 $aGeneric bifurcation of periodic points -- Singularity theory for equivariant gradient bifurcation problems -- Classification of Zq-equivariant gradient bifurcation problems -- Period-3 points of the generalized standard map -- Classification of Dq-equivariant gradient bifurcation problems -- Reversibility and degenerate bifurcation of period-q points of multiparameter maps -- Periodic points of equivariant symplectic maps -- Collision of multipliers at rational points for symplectic maps -- Equivariant maps and the collision of multipliers. 330 $aThe monograph is a study of the local bifurcations of multiparameter symplectic maps of arbitrary dimension in the neighborhood of a fixed point.The problem is reduced to a study of critical points of an equivariant gradient bifurcation problem, using the correspondence between orbits ofa symplectic map and critical points of an action functional. New results onsingularity theory for equivariant gradient bifurcation problems are obtained and then used to classify singularities of bifurcating period-q points. Of particular interest is that a general framework for analyzing group-theoretic aspects and singularities of symplectic maps (particularly period-q points) is presented. Topics include: bifurcations when the symplectic map has spatial symmetry and a theory for the collision of multipliers near rational points with and without spatial symmetry. The monograph also includes 11 self-contained appendices each with a basic result on symplectic maps. The monograph will appeal to researchers and graduate students in the areas of symplectic maps, Hamiltonian systems, singularity theory and equivariant bifurcation theory. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1558. 606 $aSingularities (Mathematics) 606 $aDifferentiable mappings 606 $aBifurcation theory 615 0$aSingularities (Mathematics) 615 0$aDifferentiable mappings. 615 0$aBifurcation theory. 676 $a516.35 686 $a58F05$2msc 686 $a58C27$2msc 700 $aBridges$b Thomas J.$f1955-$060115 702 $aFurter$b Jacques E.$f1957- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466662003316 996 $aSingularity theory and equivariant symplectic maps$9262411 997 $aUNISA