LEADER 03056nam 22006855 450 001 996466657703316 005 20200705091617.0 010 $a3-642-20438-4 024 7 $a10.1007/978-3-642-20438-8 035 $a(CKB)2670000000096125 035 $a(SSID)ssj0000506040 035 $a(PQKBManifestationID)11341136 035 $a(PQKBTitleCode)TC0000506040 035 $a(PQKBWorkID)10512893 035 $a(PQKB)10323231 035 $a(DE-He213)978-3-642-20438-8 035 $a(MiAaPQ)EBC3066848 035 $a(PPN)153867779 035 $a(EXLCZ)992670000000096125 100 $a20110620d2011 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aClassical Summation in Commutative and Noncommutative Lp-Spaces$b[electronic resource] /$fby Andreas Defant 205 $a1st ed. 2011. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2011. 215 $a1 online resource (VIII, 171 p. 17 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2021 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-20437-6 320 $aIncludes bibliographical references and indexes. 327 $a1 Introduction -- 2 Commutative Theory -- 3 Noncommutative Theory. 330 $aThe aim of this research is to develop a systematic scheme that makes it possible to transform important parts of the by now classical theory of summation of general orthonormal series into a similar theory for series in noncommutative $L_p$-spaces constructed over a noncommutative measure space (a von Neumann algebra of operators acting on a Hilbert space  together with a faithful normal state on this algebra). 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2021 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aFunctional analysis 606 $aFourier analysis 606 $aProbabilities 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aFourier Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12058 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aFunctional analysis. 615 0$aFourier analysis. 615 0$aProbabilities. 615 14$aAnalysis. 615 24$aFunctional Analysis. 615 24$aFourier Analysis. 615 24$aProbability Theory and Stochastic Processes. 676 $a515 700 $aDefant$b Andreas$4aut$4http://id.loc.gov/vocabulary/relators/aut$060538 906 $aBOOK 912 $a996466657703316 996 $aClassical summation in commutative and noncommutative Lp-spaces$9261808 997 $aUNISA LEADER 01433nam a2200361 i 4500 001 991004077159707536 005 20020509153542.0 008 970919s1990 ||| ||| | eng 020 $a0792308670 035 $ab11258998-39ule_inst 035 $aPARLA194597$9ExL 040 $aDip.to Filosofia$bita 041 0 $aengfreger 082 0 $a189 082 0 $a190.9045 100 1 $aFloistad, Guttorm$0541134 245 10$aPhilosophy and science in the Middle Ages /$cedited by Guttorm Floistad ; co-editor Raymond Klibansky 260 $aDordrecht ; Boston :$bKluwer Academic Publishers,$c1990 300 $ap. cm. 490 0 $aContemporary philosophy, a new survey ;$vv. 6 650 4$aFilosofia e scienza$xStoria 650 4$aFilosofia medievale 650 4$aScienze$yMedioevo 700 1 $aKlibansky, Raymond 710 2 $aInternational Institute of Philosophy 740 0 $aPhilosophie et science au Moyen Age 907 $a.b11258998$b23-02-17$c01-07-02 912 $a991004077159707536 945 $aLE005 189 FLO01. 01 v. 6 t. 1$cv. 6, p. 1$g1$i2005000006944$lle005$o-$pE0.00$q-$rl$s- $t0$u1$v3$w1$x0$y.i11420753$z01-07-02 945 $aLE005 189 FLO01. 01 v. 6 t. 2$cv. 6, p. 2$g1$i2005000006951$lle005$o-$pE0.00$q-$rl$s- $t0$u1$v3$w1$x0$y.i11420765$z01-07-02 996 $aPhilosophy and science in the Middle Ages$9868347 997 $aUNISALENTO 998 $ale005$b01-01-97$cm$da $e-$feng$gxx $h0$i2