LEADER 03757nam 22006975 450 001 996466657603316 005 20210913135930.0 010 $a3-540-45171-4 024 7 $a10.1007/b13355 035 $a(CKB)1000000000233139 035 $a(SSID)ssj0000320817 035 $a(PQKBManifestationID)11937805 035 $a(PQKBTitleCode)TC0000320817 035 $a(PQKBWorkID)10258154 035 $a(PQKB)10911289 035 $a(DE-He213)978-3-540-45171-6 035 $a(MiAaPQ)EBC5585122 035 $a(Au-PeEL)EBL5585122 035 $a(OCoLC)53925499 035 $a(PPN)23805490X 035 $a(EXLCZ)991000000000233139 100 $a20121227d2003 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAdiabatic Perturbation Theory in Quantum Dynamics$b[electronic resource] /$fby Stefan Teufel 205 $a1st ed. 2003. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2003. 215 $a1 online resource (VI, 242 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1821 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-40723-5 327 $aIntroduction -- First-order adiabatic theory -- Space-adiabatic perturbation theory -- Applications and extensions -- Quantum dynamics in periodic media -- Adiabatic decoupling without spectral gap -- Pseudodifferential operators -- Operator-valued Weyl calculus for tau-equivariant symbols -- Related approaches -- List of symbols -- References -- Index. 330 $aSeparation of scales plays a fundamental role in the understanding of the dynamical behaviour of complex systems in physics and other natural sciences. A prominent example is the Born-Oppenheimer approximation in molecular dynamics. This book focuses on a recent approach to adiabatic perturbation theory, which emphasizes the role of effective equations of motion and the separation of the adiabatic limit from the semiclassical limit. A detailed introduction gives an overview of the subject and makes the later chapters accessible also to readers less familiar with the material. Although the general mathematical theory based on pseudodifferential calculus is presented in detail, there is an emphasis on concrete and relevant examples from physics. Applications range from molecular dynamics to the dynamics of electrons in a crystal and from the quantum mechanics of partially confined systems to Dirac particles and nonrelativistic QED. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1821 606 $aMathematical physics 606 $aOperator theory 606 $aPartial differential equations 606 $aTheoretical, Mathematical and Computational Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19005 606 $aOperator Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M12139 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aMathematical physics. 615 0$aOperator theory. 615 0$aPartial differential equations. 615 14$aTheoretical, Mathematical and Computational Physics. 615 24$aOperator Theory. 615 24$aPartial Differential Equations. 676 $a530.12 676 $a510 s 686 $a81Q15$2msc 686 $a47G30$2msc 700 $aTeufel$b Stefan$4aut$4http://id.loc.gov/vocabulary/relators/aut$0149973 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466657603316 996 $aAdiabatic perturbation theory in quantum dynamics$9168813 997 $aUNISA