LEADER 03744nam 22007095 450 001 996466655203316 005 20201109120454.0 010 $a981-329-593-7 024 7 $a10.1007/978-981-32-9593-3 035 $a(CKB)4100000009606197 035 $a(MiAaPQ)EBC5946132 035 $a(DE-He213)978-981-32-9593-3 035 $a(PPN)241116740 035 $a(EXLCZ)994100000009606197 100 $a20191016d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to a Renormalisation Group Method$b[electronic resource] /$fby Roland Bauerschmidt, David C. Brydges, Gordon Slade 205 $a1st ed. 2019. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2019. 215 $a1 online resource (xii, 283 pages) $cillustrations 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2242 311 $a981-329-591-0 320 $aIncludes bibliographical references and index. 330 $aThis is a primer on a mathematically rigorous renormalisation group theory, presenting mathematical techniques fundamental to renormalisation group analysis such as Gaussian integration, perturbative renormalisation and the stable manifold theorem. It also provides an overview of fundamental models in statistical mechanics with critical behaviour, including the Ising and ?4 models and the self-avoiding walk. The book begins with critical behaviour and its basic discussion in statistical mechanics models, and subsequently explores perturbative and non-perturbative analysis in the renormalisation group. Lastly it discusses the relation of these topics to the self-avoiding walk and supersymmetry. Including exercises in each chapter to help readers deepen their understanding, it is a valuable resource for mathematicians and mathematical physicists wanting to learn renormalisation group theory. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2242 606 $aMathematical physics 606 $aQuantum field theory 606 $aString theory 606 $aStatistical physics 606 $aPhysics 606 $aDynamical systems 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aQuantum Field Theories, String Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19048 606 $aStatistical Physics and Dynamical Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P19090 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aComplex Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P33000 615 0$aMathematical physics. 615 0$aQuantum field theory. 615 0$aString theory. 615 0$aStatistical physics. 615 0$aPhysics. 615 0$aDynamical systems. 615 14$aMathematical Physics. 615 24$aQuantum Field Theories, String Theory. 615 24$aStatistical Physics and Dynamical Systems. 615 24$aMathematical Methods in Physics. 615 24$aComplex Systems. 676 $a530.1430151 700 $aBauerschmidt$b Roland$4aut$4http://id.loc.gov/vocabulary/relators/aut$0769120 702 $aBrydges$b David C$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSlade$b Gordon$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466655203316 996 $aIntroduction to a Renormalisation Group Method$92513903 997 $aUNISA