LEADER 03857nam 22006495 450 001 996466652303316 005 20200630022758.0 010 $a3-642-33305-2 024 7 $a10.1007/978-3-642-33305-7 035 $a(CKB)3280000000020592 035 $a(SSID)ssj0000870848 035 $a(PQKBManifestationID)11442263 035 $a(PQKBTitleCode)TC0000870848 035 $a(PQKBWorkID)10819819 035 $a(PQKB)10414528 035 $a(DE-He213)978-3-642-33305-7 035 $a(MiAaPQ)EBC3107098 035 $a(PPN)168324091 035 $a(EXLCZ)993280000000020592 100 $a20130217d2013 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aStochastic Geometry, Spatial Statistics and Random Fields$b[electronic resource] $eAsymptotic Methods /$fedited by Evgeny Spodarev 205 $a1st ed. 2013. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2013. 215 $a1 online resource (XXIV, 446 p. 105 illus., 27 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2068 300 $aIncludes contributions presented at the Summer Academy on Stochastic Geometry, Spatial Statistics and Random Fields, held at the So?llerhaus, Hirschegg, Austria, September 13-26, 2009, under the auspices of the Institute of Stochastics, University of Ulm. 311 $a3-642-33304-4 320 $aIncludes bibliographical references (pages 421-440) and index. 327 $a1 Foundations of stochastic geometry and theory of random sets -- 2 Introduction into integral geometry and stereology -- 3 Spatial point patterns ? models and statistics -- 4 Asymptotic methods in statistics of random point processes -- 5 Random tessellations and Cox processes -- 6 Asymptotic methods for random tessellations -- 7 Random polytopes -- 8 Limit theorems in discrete stochastic geometry -- 9 Introduction to random fields -- 10 Central limit theorems for weakly dependent random fields -- 11 Strong limit theorems for increments of random fields -- 12 Geometry of large random trees: SPDE approximation. 330 $aThis volume provides a modern introduction to stochastic geometry, random fields and spatial statistics at a (post)graduate level. It is focused on asymptotic methods in geometric probability including weak and strong limit theorems for random spatial structures (point processes, sets, graphs, fields) with applications to statistics. Written as a contributed volume of lecture notes, it will be useful not only for students but also for lecturers and researchers interested in geometric probability and related subjects. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2068 606 $aConvex geometry  606 $aDiscrete geometry 606 $aProbabilities 606 $aStatistics  606 $aConvex and Discrete Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21014 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 606 $aStatistical Theory and Methods$3https://scigraph.springernature.com/ontologies/product-market-codes/S11001 615 0$aConvex geometry . 615 0$aDiscrete geometry. 615 0$aProbabilities. 615 0$aStatistics . 615 14$aConvex and Discrete Geometry. 615 24$aProbability Theory and Stochastic Processes. 615 24$aStatistical Theory and Methods. 676 $a519.2 702 $aSpodarev$b Evgeny$4edt$4http://id.loc.gov/vocabulary/relators/edt 712 02$aUniversita?t Ulm.$bInstitut fu?r Stochastik. 906 $aBOOK 912 $a996466652303316 996 $aStochastic geometry, spatial statistics and random fields$9836596 997 $aUNISA