LEADER 02885nam 2200661 450 001 996466650103316 005 20211015194931.0 010 $a3-540-46698-3 024 7 $a10.1007/BFb0092515 035 $a(CKB)1000000000437290 035 $a(SSID)ssj0000322615 035 $a(PQKBManifestationID)12064930 035 $a(PQKBTitleCode)TC0000322615 035 $a(PQKBWorkID)10288279 035 $a(PQKB)10233416 035 $a(DE-He213)978-3-540-46698-7 035 $a(MiAaPQ)EBC5595156 035 $a(MiAaPQ)EBC6531646 035 $a(Au-PeEL)EBL5595156 035 $a(OCoLC)1076227309 035 $a(Au-PeEL)EBL6531646 035 $a(OCoLC)1113058401 035 $a(PPN)155181696 035 $a(EXLCZ)991000000000437290 100 $a20211015d1999 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aDiffraction by an immersed elastic wedge /$fJean-Pierre Croisille, Gilles Lebeau 205 $a1st ed. 1999. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer,$d[1999] 210 4$dİ1999 215 $a1 online resource (VIII, 140 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1723 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-66810-1 320 $aIncludes bibliographical references (pages [133]-134) and index. 327 $aNotation and results -- The spectral function -- Proofs of the results -- Numerical algorithm -- Numerical results. 330 $aThis monograph presents the mathematical description and numerical computation of the high-frequency diffracted wave by an immersed elastic wave with normal incidence. The mathematical analysis is based on the explicit description of the principal symbol of the pseudo-differential operator connected with the coupled linear problem elasticity/fluid by the wedge interface. This description is subsequently used to derive an accurate numerical computation of diffraction diagrams for different incoming waves in the fluid, and for different wedge angles. The method can be applied to any problem of coupled waves by a wedge interface. This work is of interest for any researcher concerned with high frequency wave scattering, especially mathematicians, acousticians, engineers. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1723 606 $aWaves$xDiffraction 606 $aWedges 606 $aWave-motion, Theory of 615 0$aWaves$xDiffraction. 615 0$aWedges. 615 0$aWave-motion, Theory of. 676 $a518 700 $aCroisille$b Jean-Pierre$f1961-$063019 702 $aLebeau$b Gilles 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466650103316 996 $aDiffraction by an immersed elastic wedge$91906145 997 $aUNISA