LEADER 03760nam 22006735 450 001 996466649003316 005 20200706210334.0 010 $a3-030-25883-1 024 7 $a10.1007/978-3-030-25883-2 035 $a(CKB)4100000009758997 035 $a(DE-He213)978-3-030-25883-2 035 $a(MiAaPQ)EBC5973775 035 $z(PPN)258846798 035 $a(PPN)241944503 035 $a(EXLCZ)994100000009758997 100 $a20191105d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComplex Non-Kähler Geometry$b[electronic resource] $eCetraro, Italy 2018 /$fby S?awomir Dinew, Sebastien Picard, Andrei Teleman, Alberto Verjovsky ; edited by Daniele Angella, Leandro Arosio, Eleonora Di Nezza 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (XV, 242 p. 38 illus., 25 illus. in color.) 225 1 $aC.I.M.E. Foundation Subseries ;$v2246 311 $a3-030-25882-3 320 $aIncludes bibliographical references. 330 $aCollecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds. The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and S?awomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry. 410 0$aC.I.M.E. Foundation Subseries ;$v2246 606 $aDifferential geometry 606 $aFunctions of complex variables 606 $aManifolds (Mathematics) 606 $aComplex manifolds 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aSeveral Complex Variables and Analytic Spaces$3https://scigraph.springernature.com/ontologies/product-market-codes/M12198 606 $aManifolds and Cell Complexes (incl. Diff.Topology)$3https://scigraph.springernature.com/ontologies/product-market-codes/M28027 615 0$aDifferential geometry. 615 0$aFunctions of complex variables. 615 0$aManifolds (Mathematics). 615 0$aComplex manifolds. 615 14$aDifferential Geometry. 615 24$aSeveral Complex Variables and Analytic Spaces. 615 24$aManifolds and Cell Complexes (incl. Diff.Topology). 676 $a516.36 700 $aDinew$b S?awomir$4aut$4http://id.loc.gov/vocabulary/relators/aut$01065353 702 $aPicard$b Sebastien$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aTeleman$b Andrei$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aVerjovsky$b Alberto$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aAngella$b Daniele$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aArosio$b Leandro$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aDi Nezza$b Eleonora$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466649003316 996 $aComplex Non-Kähler Geometry$92544819 997 $aUNISA