LEADER 01202nam2-2200373---450- 001 990002190330203316 005 20100722131150.0 010 $a88-13-23595-X 035 $a000219033 035 $aUSA01000219033 035 $a(ALEPH)000219033USA01 035 $a000219033 100 $a20041119d2002----km-y0enga50------ba 101 0 $aita 102 $aIT 105 $ay|||z|||001yy 200 1 $a<> <> contratto telematico$fa cura di Vincenzo Ricciuto, Nadia Zorzi 210 $aPadova$cCedam$d2002 215 $aXVII, 568 p.$d25 cm. 461 1$10010097725$12001$aTrattato di diritto commerciale e di diritto pubblico dell'economia 606 0 $aContratti telematici$xLegislazione$yItalia 676 $a346.45020285 702 1$aRICCIUTO,$bVincenzo 702 1$aZORZI,$bNadia 801 0$aIT$bsalbc$gISBD 912 $a990002190330203316 951 $aXXI.2. 41 27 (346.07 TRA 27)$b44415 G.$cXXI.2. 41 27 (346.07)$d00130597 959 $aBK 969 $aGIU 979 $aACQUISTI$b10$c20041119$lUSA01$h1034 979 $aRENATO$b90$c20050329$lUSA01$h1349 979 $aRSIAV4$b90$c20100722$lUSA01$h1311 996 $aContratto telematico$9168115 997 $aUNISA LEADER 03203oam 2200637 450 001 996466644103316 005 20210701100733.0 010 $a1-280-61500-1 010 $a9786610615001 010 $a3-540-35518-9 024 7 $a10.1007/b128444 035 $a(CKB)1000000000282958 035 $a(EBL)3036475 035 $a(SSID)ssj0000188393 035 $a(PQKBManifestationID)11171954 035 $a(PQKBTitleCode)TC0000188393 035 $a(PQKBWorkID)10152569 035 $a(PQKB)10958371 035 $a(DE-He213)978-3-540-35518-2 035 $a(MiAaPQ)EBC3036475 035 $a(MiAaPQ)EBC6476048 035 $a(PPN)123720001 035 $a(EXLCZ)991000000000282958 100 $a20210701d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 04$aThe lace expansion and its applications $eEcole d'Ete de Probabilites de Saint-Flour XXXIV-2004 /$fJean Picard, editor 205 $a1st ed. 2006. 210 1$aBerlin ;$aHeidelberg :$cSpringer,$d[2006] 210 4$d©2006 215 $a1 online resource (232 p.) 225 1 $aLecture Notes in Mathematics ;$v1879 300 $aDescription based upon print version of record. 311 $a3-540-31189-0 320 $aIncludes bibliographical references and index. 327 $aSimple Random Walk -- The Self-Avoiding Walk -- The Lace Expansion for the Self-Avoiding Walk -- Diagrammatic Estimates for the Self-Avoiding Walk -- Convergence for the Self-Avoiding Walk -- Further Results for the Self-Avoiding Walk -- Lattice Trees -- The Lace Expansion for Lattice Trees -- Percolation -- The Expansion for Percolation -- Results for Percolation -- Oriented Percolation -- Expansions for Oriented Percolation -- The Contact Process -- Branching Random Walk -- Integrated Super-Brownian Excursion -- Super-Brownian Motion. 330 $aThe lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, percolation, oriented percolation, and the contact process. This volume provides a unified and extensive overview of the lace expansion and its applications to these models. Results include proofs of existence of critical exponents and construction of scaling limits. Often, the scaling limit is described in terms of super-Brownian motion. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1879. 606 $aPercolation (Statistical physics)$vCongresses 606 $aProbabilities$vCongresses 615 0$aPercolation (Statistical physics) 615 0$aProbabilities 676 $a530.13 700 $aSlade$b G$g(Gordon)$0296628 702 $aPicard$b Jean$f1959- 712 12$aEcole d'e?te? de probabilite?s de Saint-Flour$d(34th :$f2004 :$eSaint-Flour, France) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 906 $aBOOK 912 $a996466644103316 996 $aThe lace expansion and its applications$92872871 997 $aUNISA