LEADER 01976nam 2200613 450 001 996466641903316 005 20220908104421.0 010 $a3-540-36309-2 024 7 $a10.1007/BFb0060932 035 $a(CKB)1000000000438651 035 $a(SSID)ssj0000324155 035 $a(PQKBManifestationID)12091423 035 $a(PQKBTitleCode)TC0000324155 035 $a(PQKBWorkID)10305309 035 $a(PQKB)11081580 035 $a(DE-He213)978-3-540-36309-5 035 $a(MiAaPQ)EBC5578759 035 $a(Au-PeEL)EBL5578759 035 $a(OCoLC)1066193634 035 $a(MiAaPQ)EBC6842279 035 $a(Au-PeEL)EBL6842279 035 $a(OCoLC)1113593837 035 $a(PPN)155166271 035 $a(EXLCZ)991000000000438651 100 $a20220908d1970 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to Grothendieck duality theory /$fAllen Altman, Steven Kleiman 205 $a1st ed. 1970. 210 1$aBerlin, Germany :$cSpringer,$d[1970] 210 4$d©1970 215 $a1 online resource (IV, 188 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v146 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-04935-5 311 $a3-540-04935-5 327 $aPreface -- Study of ?X -- Completions, primary decomposition and length -- Depth and dimension -- Duality theorems -- Flat morphisms -- Étale morphisms -- Smooth morphisms -- Curves. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v146 606 $aAlgebra, Homological 615 0$aAlgebra, Homological. 676 $a512.89 686 $a18F10$2msc 700 $aAltman$b Allen$054130 702 $aKleiman$b Steven L. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466641903316 996 $aIntroduction to Grothendieck duality theory$9262855 997 $aUNISA