LEADER 03301nam 2200601 450 001 996466637303316 005 20220224171737.0 010 $a3-540-48424-8 024 7 $a10.1007/BFb0092569 035 $a(CKB)1000000000437304 035 $a(SSID)ssj0000326251 035 $a(PQKBManifestationID)12097380 035 $a(PQKBTitleCode)TC0000326251 035 $a(PQKBWorkID)10296425 035 $a(PQKB)10871593 035 $a(DE-He213)978-3-540-48424-0 035 $a(MiAaPQ)EBC5595430 035 $a(Au-PeEL)EBL5595430 035 $a(OCoLC)1076239881 035 $a(MiAaPQ)EBC6856895 035 $a(Au-PeEL)EBL6856895 035 $a(PPN)155221841 035 $a(EXLCZ)991000000000437304 100 $a20220224d1999 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aRepresentations of fundamental groups of algebraic varietes /$fKang Zuo 205 $a1st ed. 1999. 210 1$aBerlin :$cSpringer,$d[1999] 210 4$dİ1999 215 $a1 online resource (X, 135 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1708 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-66312-6 327 $aIntroduction -- Preliminaries -- Review of Algebraic groups over arbitrary fields -- Representations of phi1 and the Moduli space -- p-adic norm on a vector space and Bruhat-Tits buildings -- Harmonic metric on flat vector bundle -- Pluriharmonic map of finite energy -- Pluriharmonic maps of possibly infinite energy but with controlled growth at infinity -- Non-abelian Hodge theory, factorization theorems for non rigid or p-adic unbound representations -- Higgs bundles for archimedean representations and equivariant holomorphic 1-forms for p-adic representations -- Albanese maps and a Lefschetz type theorem for holomorphic 1-forms -- Factorizations for nonrigid representations into almost simple complex algebraic groups -- Factorization for p-adic unbounded representations into almost simple p-adic algebraic groups -- Simpson's construction of families on non rigid representations -- Shavarevich maps for representations of phi1, Kodaira dimension and Chern-hyperbolicity of Shavarevich varieties... 330 $aUsing harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1708 606 $aAlgebraic varieties 606 $aRepresentations of groups$xData processing 615 0$aAlgebraic varieties. 615 0$aRepresentations of groups$xData processing. 676 $a516.35 700 $aZuo$b Kang$f1955-$062856 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466637303316 996 $aRepresentations of fundamental groups of algebraic varietes$92788919 997 $aUNISA