LEADER 04254nam 22007815 450 001 996466637103316 005 20200701022931.0 010 $a3-642-23840-8 024 7 $a10.1007/978-3-642-23840-6 035 $a(CKB)3390000000021667 035 $a(SSID)ssj0000610895 035 $a(PQKBManifestationID)11973987 035 $a(PQKBTitleCode)TC0000610895 035 $a(PQKBWorkID)10644930 035 $a(PQKB)10356187 035 $a(DE-He213)978-3-642-23840-6 035 $a(MiAaPQ)EBC3070566 035 $a(PPN)159084814 035 $a(EXLCZ)993390000000021667 100 $a20120104d2012 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSpectral Analysis on Graph-like Spaces$b[electronic resource] /$fby Olaf Post 205 $a1st ed. 2012. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2012. 215 $a1 online resource (XV, 431 p. 28 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2039 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-23839-4 320 $aIncludes bibliographical references and index. 327 $a1 Introduction -- 2 Graphs and associated Laplacians -- 3 Scales of Hilbert space and boundary triples -- 4 Two operators in different Hilbert spaces -- 5 Manifolds, tubular neighbourhoods and their perturbations -- 6 Plumber?s shop: Estimates for star graphs and related spaces -- 7 Global convergence results. 330 $aSmall-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis.   In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-like spaces''), and their natural limits on metric graphs. In particular, we explore norm resolvent convergence, convergence of the spectra and resonances.   Since the underlying spaces in the thin radius limit change, and become singular in the limit, we develop new tools such as   -norm convergence of operators acting in different Hilbert  spaces,   - an extension of the concept of boundary triples to partial  differential operators, and   -an abstract definition of resonances via boundary triples.   These tools are formulated in an abstract framework, independent of the original problem of graph-like spaces, so that they can be applied in many other situations where the spaces are perturbed. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2039 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aFunctional analysis 606 $aOperator theory 606 $aMathematical physics 606 $aPartial differential equations 606 $aGraph theory 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aOperator Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M12139 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aGraph Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M29020 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aFunctional analysis. 615 0$aOperator theory. 615 0$aMathematical physics. 615 0$aPartial differential equations. 615 0$aGraph theory. 615 14$aAnalysis. 615 24$aFunctional Analysis. 615 24$aOperator Theory. 615 24$aMathematical Physics. 615 24$aPartial Differential Equations. 615 24$aGraph Theory. 676 $a515 700 $aPost$b Olaf$4aut$4http://id.loc.gov/vocabulary/relators/aut$0477397 906 $aBOOK 912 $a996466637103316 996 $aSpectral analysis on graph-like spaces$9239891 997 $aUNISA