LEADER 04415nam 22008295 450 001 996466635103316 005 20200703065228.0 010 $a3-540-45560-4 024 7 $a10.1007/b82937 035 $a(CKB)1000000000233227 035 $a(SSID)ssj0000324360 035 $a(PQKBManifestationID)11245109 035 $a(PQKBTitleCode)TC0000324360 035 $a(PQKBWorkID)10322746 035 $a(PQKB)10004884 035 $a(DE-He213)978-3-540-45560-8 035 $a(MiAaPQ)EBC6288239 035 $a(MiAaPQ)EBC5592803 035 $a(Au-PeEL)EBL5592803 035 $a(OCoLC)1066191377 035 $a(PPN)155180266 035 $a(EXLCZ)991000000000233227 100 $a20121227d2002 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aLectures on Amenability$b[electronic resource] /$fby Volker Runde 205 $a1st ed. 2002. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2002. 215 $a1 online resource (XIV, 302 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1774 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-42852-6 320 $aIncludes bibliographical references (pages [281]-288) and index. 327 $aParadoxical decompositions -- Amenable, locally comact groups -- Amenable Banach algebras -- Exemples of amenable Banach algebras -- Amenability-like properties -- Banach homology -- C* and W*-algebras -- Operator amenability -- Geometry of spaces of homomorphisms -- Open problems: Abstract harmonic analysis -- Tensor products -- Banach space properties -- Operator spaces -- List of symbols -- References -- Index. 330 $aThe notion of amenability has its origins in the beginnings of modern measure theory: Does a finitely additive set function exist which is invariant under a certain group action? Since the 1940s, amenability has become an important concept in abstract harmonic analysis (or rather, more generally, in the theory of semitopological semigroups). In 1972, B.E. Johnson showed that the amenability of a locally compact group G can be characterized in terms of the Hochschild cohomology of its group algebra L^1(G): this initiated the theory of amenable Banach algebras. Since then, amenability has penetrated other branches of mathematics, such as von Neumann algebras, operator spaces, and even differential geometry. Lectures on Amenability introduces second year graduate students to this fascinating area of modern mathematics and leads them to a level from where they can go on to read original papers on the subject. Numerous exercises are interspersed in the text. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1774 606 $aAlgebra 606 $aFunctional analysis 606 $aHarmonic analysis 606 $aCategory theory (Mathematics) 606 $aHomological algebra 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aAlgebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11000 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aAbstract Harmonic Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12015 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 606 $aGlobal Analysis and Analysis on Manifolds$3https://scigraph.springernature.com/ontologies/product-market-codes/M12082 615 0$aAlgebra. 615 0$aFunctional analysis. 615 0$aHarmonic analysis. 615 0$aCategory theory (Mathematics). 615 0$aHomological algebra. 615 0$aGlobal analysis (Mathematics). 615 0$aManifolds (Mathematics). 615 14$aAlgebra. 615 24$aFunctional Analysis. 615 24$aAbstract Harmonic Analysis. 615 24$aCategory Theory, Homological Algebra. 615 24$aGlobal Analysis and Analysis on Manifolds. 676 $a510 s 700 $aRunde$b Volker$4aut$4http://id.loc.gov/vocabulary/relators/aut$066739 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466635103316 996 $aLectures on amenability$9262269 997 $aUNISA