LEADER 02185nam 2200625 450 001 996466632703316 005 20220908143755.0 010 $a3-540-35125-6 024 7 $a10.1007/BFb0069742 035 $a(CKB)1000000000438071 035 $a(SSID)ssj0000322738 035 $a(PQKBManifestationID)12064932 035 $a(PQKBTitleCode)TC0000322738 035 $a(PQKBWorkID)10289640 035 $a(PQKB)10630188 035 $a(DE-He213)978-3-540-35125-2 035 $a(MiAaPQ)EBC5585048 035 $a(Au-PeEL)EBL5585048 035 $a(OCoLC)1066188766 035 $a(MiAaPQ)EBC6842246 035 $a(Au-PeEL)EBL6842246 035 $a(PPN)155202456 035 $a(EXLCZ)991000000000438071 100 $a20220908d1979 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aDuality for crossed products of von Neumann algebras /$fY. Nakagami and M. Takesaki 205 $a1st ed. 1979. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1979] 210 4$d©1979 215 $a1 online resource (XII, 140 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v731 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-09522-5 327 $aAction, co-action and duality -- Elementary properties of crossed products -- Integrability and dominance -- Spectrum -- Perturbations of actions and co-actions -- Relative commutant of crossed products -- Applications to galois theory. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v731 606 $aDuality theory (Mathematics) 606 $aVon Neumann algebras$xCrossed products 606 $aMathematics 615 0$aDuality theory (Mathematics) 615 0$aVon Neumann algebras$xCrossed products. 615 0$aMathematics. 676 $a510 700 $aNakagami$b Yoshiomi$f1940-$057407 702 $aTakesaki$b Masamichi$f1933- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466632703316 996 $aDuality for crossed products of von Neumann algebras$9262976 997 $aUNISA LEADER 06644nam 22017535 450 001 9910154745403321 005 20190708092533.0 010 $a1-4008-8255-9 024 7 $a10.1515/9781400882557 035 $a(CKB)3710000000631328 035 $a(MiAaPQ)EBC4738743 035 $a(DE-B1597)467921 035 $a(OCoLC)954123972 035 $a(OCoLC)990384277 035 $a(DE-B1597)9781400882557 035 $a(EXLCZ)993710000000631328 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aComplex Dynamics and Renormalization (AM-135), Volume 135 /$fCurtis T. McMullen 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1995 215 $a1 online resource (229 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v317 311 $a0-691-02982-2 311 $a0-691-02981-4 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tContents -- $tChapter 1. Introduction -- $tChapter 2. Background in conformal geometry -- $tChapter 3. Dynamics of rational maps -- $tChapter 4. Holomorphic motions and the Mandelbrot set -- $tChapter 5. Compactness in holomorphic dynamics -- $tChapter 6. Polynomials and external rays -- $tChapter 7. Renormalization -- $tChapter 8. Puzzles and infinite renormalization -- $tChapter 9. Robustness -- $tChapter 10. Limits of renormalization -- $tChapter 11. Real quadratic polynomials -- $tAppendix A. Orbifolds -- $tAppendix B. A closing lemma for rational maps -- $tBibliography -- $tIndex 330 $aAddressing researchers and graduate students in the active meeting ground of analysis, geometry, and dynamics, this book presents a study of renormalization of quadratic polynomials and a rapid introduction to techniques in complex dynamics. Its central concern is the structure of an infinitely renormalizable quadratic polynomial f(z) = z2 + c. As discovered by Feigenbaum, such a mapping exhibits a repetition of form at infinitely many scales. Drawing on universal estimates in hyperbolic geometry, this work gives an analysis of the limiting forms that can occur and develops a rigidity criterion for the polynomial f. This criterion supports general conjectures about the behavior of rational maps and the structure of the Mandelbrot set. The course of the main argument entails many facets of modern complex dynamics. Included are foundational results in geometric function theory, quasiconformal mappings, and hyperbolic geometry. Most of the tools are discussed in the setting of general polynomials and rational maps. 410 0$aAnnals of mathematics studies ;$vno. 135. 606 $aRenormalization (Physics) 606 $aPolynomials 606 $aDynamics 606 $aMathematical physics 610 $aAnalytic function. 610 $aAttractor. 610 $aAutomorphism. 610 $aBernhard Riemann. 610 $aBounded set. 610 $aBranched covering. 610 $aCantor set. 610 $aCardioid. 610 $aChain rule. 610 $aCoefficient. 610 $aCombinatorics. 610 $aComplex manifold. 610 $aComplex plane. 610 $aComplex torus. 610 $aConformal geometry. 610 $aConformal map. 610 $aConjecture. 610 $aConnected space. 610 $aCovering space. 610 $aCyclic group. 610 $aDegeneracy (mathematics). 610 $aDense set. 610 $aDiagram (category theory). 610 $aDiameter. 610 $aDifferential geometry of surfaces. 610 $aDihedral group. 610 $aDimension (vector space). 610 $aDimension. 610 $aDisjoint sets. 610 $aDisk (mathematics). 610 $aDynamical system. 610 $aEndomorphism. 610 $aEquivalence class. 610 $aEquivalence relation. 610 $aErgodic theory. 610 $aEuler characteristic. 610 $aFilled Julia set. 610 $aGeometric function theory. 610 $aGeometry. 610 $aHausdorff dimension. 610 $aHolomorphic function. 610 $aHomeomorphism. 610 $aHomology (mathematics). 610 $aHyperbolic geometry. 610 $aImplicit function theorem. 610 $aInjective function. 610 $aInteger matrix. 610 $aInterval (mathematics). 610 $aInverse limit. 610 $aJulia set. 610 $aKleinian group. 610 $aLimit point. 610 $aLimit set. 610 $aLinear map. 610 $aMandelbrot set. 610 $aManifold. 610 $aMarkov partition. 610 $aMathematical induction. 610 $aMaxima and minima. 610 $aMeasure (mathematics). 610 $aModuli (physics). 610 $aMonic polynomial. 610 $aMontel's theorem. 610 $aMöbius transformation. 610 $aNatural number. 610 $aOpen set. 610 $aOrbifold. 610 $aPeriodic point. 610 $aPermutation. 610 $aPoint at infinity. 610 $aPole (complex analysis). 610 $aPolynomial. 610 $aProper map. 610 $aQuadratic differential. 610 $aQuadratic function. 610 $aQuadratic. 610 $aQuasi-isometry. 610 $aQuasiconformal mapping. 610 $aQuotient space (topology). 610 $aRemovable singularity. 610 $aRenormalization. 610 $aRiemann mapping theorem. 610 $aRiemann sphere. 610 $aRiemann surface. 610 $aRigidity theory (physics). 610 $aScalar (physics). 610 $aSchwarz lemma. 610 $aScientific notation. 610 $aSpecial case. 610 $aStructural stability. 610 $aSubgroup. 610 $aSubsequence. 610 $aSymbolic dynamics. 610 $aTangent space. 610 $aTheorem. 610 $aUniformization theorem. 610 $aUniformization. 610 $aUnion (set theory). 610 $aUnit disk. 610 $aUpper and lower bounds. 615 0$aRenormalization (Physics) 615 0$aPolynomials. 615 0$aDynamics. 615 0$aMathematical physics. 676 $a530.1/43/0151 700 $aMcMullen$b Curtis T., $061159 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154745403321 996 $aComplex Dynamics and Renormalization (AM-135), Volume 135$92785741 997 $aUNINA