LEADER 03455nam 2200589 450 001 996466632503316 005 20220906114356.0 010 $a3-540-47139-1 024 7 $a10.1007/BFb0087892 035 $a(CKB)1000000000437025 035 $a(SSID)ssj0000322037 035 $a(PQKBManifestationID)12125874 035 $a(PQKBTitleCode)TC0000322037 035 $a(PQKBWorkID)10280317 035 $a(PQKB)10044235 035 $a(DE-He213)978-3-540-47139-4 035 $a(MiAaPQ)EBC5584836 035 $a(Au-PeEL)EBL5584836 035 $a(OCoLC)1066193879 035 $a(MiAaPQ)EBC6841929 035 $a(Au-PeEL)EBL6841929 035 $a(PPN)155223798 035 $a(EXLCZ)991000000000437025 100 $a20220906d1990 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aComputational methods and function theory $eproceedings of a conference, held in Valparai?so, Chile, March 13-18, 1989 /$fedited by St. Ruscheweyh 205 $a1st ed. 1990. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer,$d[1990] 210 4$dİ1990 215 $a1 online resource (VIII, 220 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1435 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-52768-0 320 $aIncludes bibliographical references. 327 $aOpen problems and conjectures in complex analysis -- A remarkable cubic mean iteration -- On the maximal range problem for slit domains -- On bernstein type inequalities and a weighted chebyshev approximation problem on ellipses -- Conformal mapping and Fourier-Jacobi approximations -- Numerical solutions of the schiffer equation -- Behavior of the lagrange interpolants in the roots of unity -- Orthogonal polynomials, chain sequences, three-term recurrence relations and continued fractions -- On Thurston's formulation and proof of Andreev's theorem -- Hyperbolic geometry in spherically k-convex regions -- The Bloch and Marden constants -- On some analytic and computational aspects of two dimensional vortex sheet evolution -- On the numerical performance of a domain decomposition method for conformal mapping -- Planar harmonic mappings -- Extremal problems for non-vanishing H p functions -- Some results on separate convergence of continued fractions -- Asymptotics for the zeros of the partial sums of ez. II. 330 $aThe volume is devoted to the interaction of modern scientific computation and classical function theory. Many problems in pure and more applied function theory can be tackled using modern computing facilities: numerically as well as in the sense of computer algebra. On the other hand, computer algorithms are often based on complex function theory, and dedicated research on their theoretical foundations can lead to great enhancements in performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1435. 606 $aGeometric function theory$vCongresses 615 0$aGeometric function theory 676 $a515 702 $aRuscheweyh$b Stephan 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466632503316 996 $aComputational methods and function theory$980116 997 $aUNISA